• Title/Summary/Keyword: Electron Beams

Search Result 220, Processing Time 0.032 seconds

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Microstructure and Properties of Er-SiOX Films Synthesized by ion Beam Assisted Deposition

  • Duan, Gao-Song;Zheng, Shu-Qing;Zhang, Xiao-Juan;Qing Yu;Wang Liang
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.101-104
    • /
    • 2002
  • Er doped SiOx films have been synthesized by ion beam assisted deposition (IBAD). The morphology and microstructure of films and their annealing behaviors have been examined by using scanning electron microscopy and x-ray diffraction. The composition and properties of films have been systematically investigated.

  • PDF

Characterization Method for Testing Circuit Patterns on MCM/PCB Modules with Electron Beams of a Scanning Electron Microscope (MCM/PCB 회로패턴 검사에서 SEM의 전자빔을 이용한 측정방법)

  • Kim, Joon-Il;Shin, Joon-Kyun;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a characterization method for faults of circuit patterns on MCM(Multichip Module) or PCB(Printed Circuit Board) substrates with electron beams of a SEM(Scanning Electron Microscope) by inducing voltage contrast on the signal line. The experimentation employes dual potential electron beams for the fault characterization of circuit patterns with a commercial SEM without modifying its structure. The testing procedure utilizes only one electron gun for the generation of dual potential electron beams by two different accelerating voltages, one for charging electron beam which introduces the yield of secondary electron $\delta$ < 1 and the other for reading beam which introduces $\delta$ > 1. Reading beam can read open's/short's of a specific net among many test nets, simultaneously discharging during the reading process for the next step, by removing its voltage contrast. The experimental results of testing the copper signal lines on glass-epoxy substrates showed that the state of open's/short's had generated the brightness contrast due to the voltage contrast on the surface of copper conductor line, when the net had charged with charging electron beams of 7KV accelerating voltages and then read with scanning reading electron beams of 2KV accelerating voltages in 10 seconds. The experimental results with Au pads of a IC die and Au plated Cu pads of BGA substrates provided the simple test method of circuit lines with 7KV charging electron beam and 2KV reading beam. Thus the characterization method showed that we can test open and short circuits of the net nondestructively by using dual potential electron beams with one SEM gun.

  • PDF

Sensitivity of Lavender to Proton, Electron, and Gamma Radiation

  • Chen, Wensheng;Li, Hui;Shi, Lei;Bai, Hong Tong
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.122-133
    • /
    • 2016
  • While ion beams are widely used in plant breeding, little is known about the sensitivity of Lavandula angustifolia (lavender) to ionizing radiation. To compare the biological effects of different types of ionizing radiation on the germination and survival rates of lavender, we exposed lavender seeds to gamma rays, 3 MeV electron beams, and 1.89 MeV proton ion beams. We observed that the seed germination rate decreased with increasing dosages of all three types of ionizing radiation. The malformation rate of lavender seedlings exposed to electron beams and gamma rays increased with increasing radiation dosage. By contrast, the effect of the accelerated proton beams on the malformation rate was negatively correlated with the dosage used. The survival rate of lavender seedlings exposed to the three types of ionizing radiation decreased in a dose-dependent manner. In addition, the survival rate of seedlings irradiated with proton and electron beams decreased more slowly than did that of seedlings irradiated with gamma rays. The half-lethal dose of gamma rays, electron beams, and proton beams was determined to be 48.1 Gy, 134.3 Gy, and 277.8 Gy, respectively, and the most suitable proton-ion energy for lavender seeds in terms of penetration depth was determined to be 5 MeV. These findings provide valuable information for the breeding of lavender by radiation mutation.

The Calculation of Energy Distributions for Clinical Electron Beams from Mono Energetic Depth dose Data (단일에너지 깊이선량률 자료에 의한 치료용 전자선의 에너지분포 계산)

  • 이정옥;정동혁
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2004
  • The energy distributions for clinically used electron beams from measured and calculated mono energetic depth dose values were calculated. The energy distributions having the minimum difference between the measured and reduced values of depth dose are determined by iterations based on least square method. The nominal energies of 6, 9, 12, 15 MeV clinical electron beams were examined. The Monte Carlo depth dose calculations with determined energy distributions were peformed to evaluate those distributions. In a comparison of the calculated and measured depth dose data, the standard errors are estimated within $\pm$ 3% from surface to R$_{80}$ depth and within $\pm$4% from the surface to near the range for all electron beams. This can be practically applied to determine the energy distributions for clinically used electron beams.

  • PDF

Improvement of Calculation Accuracy in the Electron Monte Carlo Algorithm with Optional Air Profile Measurements

  • Sung, Jiwon;Jin, Hyeongmin;Kim, Jeongho;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.163-171
    • /
    • 2020
  • Purpose: In this study, the accuracies of electron Monte Carlo (eMC) calculation algorithms were evaluated to determine whether electron beams were modeled by optional air profiles (APs) designed for each applicator size. Methods: Electron beams with the energies of 6, 9, 12, and 16 MeV for VitalBeam (Varian Medical System, Palo Alto, CA, USA) and 6, 9, 12, 16, and 20 MeV for Clinac iX (Varian Medical System) were used. Optional APs were measured at the source-to-detector distance of 95 cm with jaw openings appropriate for each machine, electron beam energy, and applicator size. The measured optional APs were postprocessed and converted into the w2CAD format. Then, the electron beams were modeled and calculated with and without optional APs. Measured profiles, percentage depth doses, penumbras with respect to each machine, and energy were compared to calculated dose distributions. Results: For VitalBeam, the profile differences between the measurement and calculation were reduced by 0.35%, 0.15%, 0.14%, and 0.38% at 6, 9, 12, and 16 MeV, respectively, when the beams were modeled with APs. For Clinac iX, the differences were decreased by 0.16%, -0.31%, 0.94%, 0.42%, and 0.74%, at 6, 9, 12, 16, and 20 MeV, respectively, with the insertion of APs. Of note, no significant improvements in penumbra and percentage depth dose were observed, although the beam models were configured with APs. Conclusions: The accuracy of the eMC calculation can be improved in profiles when electron beams are modeled with optional APs.

Design for High Voltage Generator of Electron Beam Manufacturing System (전자빔 가공기를 위한 고전압 발생 장치 설계)

  • 임선종;강재훈;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.564-567
    • /
    • 2004
  • In the manufacture of integrated circuits, photolithography is the lowest yield step in present production lines. Electron beams form a powerful set of tools with which to attack this problem. Electron beams can be used to make patterns that are smaller than can a photolithography. We design a high voltage generator of electron beam manufacturing system. For this purpose, first, the configuration of electron beam manufacturing system was analyzed. Second, the basic configuration of a high voltage generator and test results were presented.

  • PDF