• 제목/요약/키워드: Electromechanical system

검색결과 269건 처리시간 0.021초

카본나노튜뷰/전도성 폴리머 복합재 엑츄에이터의 전압-변형률 관계식 (An Approximate Description of Strain-Voltage Relationships for SWNTs/Conducting Polymer Composite Actuator)

  • ;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.9-14
    • /
    • 2004
  • An approximate relationship of the strain and applied potential was derived for SWNTs and conductive polymer composite actuator. During the deriving process, we used an electrochemical system to model the electromechanical actuation of the composite film. This relationship can give us a direct understanding to the actuation of a nanoactuator

  • PDF

그래핀 나노리본 메모리의 동적 특성에 대한 연구 (A Study of Dynamic Properties of Graphene-Nanoribbon Memory)

  • 이준하
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.53-56
    • /
    • 2014
  • In this work, we investigate the operational properties of this proposed device in detail via classical MD simulations. The bi-stability of the GNF(Graphene Nano-flake) shuttle encapsulated in bi-layer GNR could be achieved from the increase of the attractive energy between the GNRs when the GNF approached the edges of the GNRs. This result showed the potential application of the nano-electromechanical GNR memory as a NVRAM.

Multivariate Gaussian Function을 이용한 지능형 집진기 운전상황 모니터링 시스템 개발 (Development of An Operation Monitoring System for Intelligent Dust Collector By Using Multivariate Gaussian Function)

  • 한윤종;김성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.470-472
    • /
    • 2006
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as environment and health, industry scene system monitoring, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modem learning techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes having the capability of simple processing and wireless communication. The proposed system is able to perform context classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to intelligent dust collecting system.

  • PDF

Power System Oscillations Damping by Robust Decentralized DFIG Wind Turbines

  • Surinkaew, Tossaporn;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.487-495
    • /
    • 2015
  • This paper proposes a new robust decentralized power oscillation dampers (POD) design of doubly-fed induction generator (DFIG) wind turbine for damping of low frequency electromechanical oscillations in an interconnected power system. The POD structure is based on the practical $2^{nd}$-order lead/lag compensator with single input. Without exact mathematical model, the inverse output multiplicative perturbation is applied to represent system uncertainties such as system parameters variation, various loading conditions etc. The parameters optimization of decentralized PODs is carried out so that the stabilizing performance and robust stability margin against system uncertainties are guaranteed. The improved firefly algorithm is applied to tune the optimal POD parameters automatically. Simulation study in two-area four-machine interconnected system shows that the proposed robust POD is much superior to the conventional POD in terms of stabilizing effect and robustness.

압전 바이모프를 이용한 HDD 디스크-스핀들 시스템의 션트 댐핑 (Shunt Damping of HDD Disk-Spindle System Using Piezoelectric Bimorph)

  • 임수철;최승복;박영필;박노철
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.84-92
    • /
    • 2005
  • This work presents the feasibility of shunt damping far vibration suppression of the rotating HDD disk-spindle system using piezoelectric bimorph. A target vibration mode which significantly restricts the recording density increment of the drive is determined through modal analysis and a piezoelectric bimorph is designed to suppress unwanted vibration. After deriving the two-dimensional generalized electromechanical coupling coefficient of the shunted drive, the shunt damping of the system is predicted by simulating the displacement transmissibility using the coefficient. In addition, optimal design process using sensitivity analysis is undertaken in order to improve the shunt damping of the system. The effectiveness of the proposed methodology is verified through experimental implementation by observing the vibration characteristics of the rotating disk-spindle system in frequency domain.

  • PDF

A Method of Hysteresis Modeling and Traction Control for a Piezoelectric Actuator

  • Sung, Baek-Ju;Lee, Eun-Woong;Lee, Jae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.401-407
    • /
    • 2008
  • The dynamic model and displacement control of piezoelectric actuators, which are commercially available materials for managing extremely small displacements in the range of sub-nanometers, are presented. Piezoceramics have electromechanical characteristics that transduce energy between the electrical and mechanical domains. However, they have hysteresis between the input voltage and output displacement, and this behavior is very demanding and complicated. In this paper, we propose a method of designing the control algorithm, and present the dynamic modeling equations that represent the hysteretic behavior between input voltage and output displacement. For this process, the piezoelectric actuator is treated as a second-order linear dynamic system and system constants are determined by the system identification method. Also, a classical PID controller is designed and used to regulate the output displacement of the actuator. To evaluate the performance of the proposed method, numerical simulation results are presented.

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.

EXCITATION SYSTEM MODERNIZATION OF THERMAL POWER PLANT

  • Kim, Chan-Ki;Kim, Jang-Mok;Rhew, Ho-Sun
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2024-2026
    • /
    • 1998
  • Many power plants built 20-30 years ago are facing problems associated with the excitation system used for controlling generator output voltage. After years of reliable operation, generation is experiencing increased down time due to maintenance associated with the exciting excitation equipment. Reliability of the excitation system has become an issue, especially where many of these generation plants may be critical to the internal processes used for manufacturing. Wear out mechanisms such as those associated with the wire wound rheostat the electromechanical voltage regulator, insulation failures of the rotating exciter and commutator deterioration have become real problems typical of many older installations. These are some of the issues that are affecting system reliability for older power plants. This paper will address typical problems associated with the old excitation systems and the justification for a replacement static excitation system used in many Paper Mills.

  • PDF

압전 바이모프를 이용한 HDD 스핀들-디스크 시스템의 진동저감 (Vibration Suppression of the HDD Spindle-Disk System Using Piezoelectric Bimorph)

  • 임수철;박종성;최승복;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents the feasibility of the piezoelectric shunt damping for vibration suppression of the highly rotating HDD disk-spindle system. A target vibration mode which restricts the recording density increment of the drive is determined by modal analysis of the drive, and a piezoelectric bimorph is designed to suppress the vibration level of the target mode. After deriving the generalized two-dimensional electromechanical coupling coefficient of the shunted spindle-disk system, the damping performance of the system is predicted by simulating the displacement transmissibility on the target mode. After manufacturing the proposed drive, the vibration suppression performance of the proposed methodology is experimentally evaluated in frequency domain.

  • PDF

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.