Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.6.03

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics  

Kang, Woo-Seok (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Lee, Young-Jin (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Choi, Gangho (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Shin, Dong-Jin (Korea Electrotechnology Research Institute)
Lim, Dong-Hwan (Korea Electrotechnology Research Institute)
Jeong, Soon-Jong (Korea Electrotechnology Research Institute)
Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Abstract
More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.
Keywords
Lead-free piezoceramics; Incipient piezoelectric strain; Electric-field concentration; Electrode patterning;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H.-P. Kim, C. W. Ahn, Y. Hwang, H.-Y. Lee, and W. Jo, "Strategies of a Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs," J. Korean Ceram. Soc., 54 [2] 86-95 (2017).   DOI
2 T.-G. Lee and S. Nahm, "Review of Sintering Technologies, Structural Characteristics, and Piezoelectric Properties of NKN-Based Lead-Free Ceramics," Trans. Electr. Electron. Mater., 20 [5] 385-402 (2019).   DOI
3 J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, and D. J. Green, "$(K,Na)NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013).   DOI
4 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012).   DOI
5 C. W. Ahn, C.-H. Hong, B.-Y. Choi, H.-P. Kim, H.-S. Han, Y. Hwang, W. Jo, K. Wang, J.-F. Li, J.-S. Lee, and I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68 [12] 1481-94 (2016).   DOI
6 S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, "Gigantic Electrostrain in Duplex Structured Alkaline Niobates," Chem. Mater., 24 [17] 3363-69 (2012).   DOI
7 C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2014).   DOI
8 D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99 [6] 062906 (2011).   DOI
9 D. S. Lee, S. Jong Jeong, M. Soo Kim, and J. Hyuk Koh, "Electric Field Induced Polarization and Strain of Bi-Based Ceramic Composites," J. Appl. Phys., 112 [12] 124109 (2012).   DOI
10 P. Fan, Y. Zhang, Y. Zhu, W. Ma, K. Liu, X. He, M. A. Marwat, B. Xie, M. Li, and H. Zhang, "Large Strain under Low Driving Field in Lead-Free Relaxor/Ferroelectric Composite Ceramics," J. Am. Ceram. Soc., 102 [7] 4113-26 (2019).   DOI
11 M. A. Qaiser, A. Hussain, J. Zhang, Y. Wang, S. Zhang, L. Chen, and G. Yuan, "0-3 Type $Bi_3TaTiO_9:40wt%BiFeO_3$ Composite with Improved High-Temperature Piezoelectric Properties," J. Alloys Compd., 740 1-6 (2018).   DOI
12 H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.-K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013).   DOI
13 C.-H. Hong, H.-S. Han, J.-S. Lee, K. Wang, F.-Z. Yao, J.-F. Li, J.-H. Gwon, N. V. Quyet, J.-K. Jung, and W. Jo, "Ring-Type Rotary Ultrasonic Motor Using Lead-Free Ceramics," J. Sens. Sci. Technol, 24 [4] 228-31 (2015).   DOI
14 C.-W. Tao, X.-Y. Geng, J. Zhang, R.-X. Wang, Z.-B. Gu, and S.-T. Zhang, "$Bi_{0.5}Na_{0.5}TiO_3$-$BaTiO_3$-$K_{0.5}Na_{0.5}NbO_3:ZnO$ Relaxor Ferroelectric Composites with High Breakdown Electric Field and Large Energy Storage Properties," J. Eur. Ceram. Soc., 38 [15] 4946-52 (2018).   DOI
15 A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, J. S. Kim, and I. W. Kim, "Effect of Potassium Concentration on the Structure and Electrical Properties of Lead-Free $Bi_{0.5}(Na,K))_{0.5}TiO_3-BiAlO_3$ Piezoelectric Ceramics," J. Alloys Compd., 509 [6] 3148-54 (2011).   DOI
16 Z. Luo, J. Glaum, T. Granzow, W. Jo, R. Dittmer, M. Hoffman, and J. Rodel, "Bipolar and Unipolar Fatigue of Ferroelectric BNT-Based Lead-Free Piezoceramics," J. Am. Ceram. Soc., 94 [2] 529-35 (2011).   DOI
17 Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rodel, and M. Hoffman, "Effect of Ferroelectric Long-Range Order on the Unipolar and Bipolar Electric Fatigue in $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Piezoceramics," J. Am. Ceram. Soc., 94 [11] 3927-33 (2011).   DOI
18 C.-H. Hong, H. Guo, X. Tan, J. E. Daniels, and W. Jo, "Polarization Reversal Via a Transient Relaxor State in Nonergodic Relaxors near Freezing Temperature," J. Materiomics, online published, doi: 10.1016/j.jmat.2019.06.004.
19 W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in $(K_{0.5}Na_{0.5})NbO_3$-Modified $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009).   DOI
20 C. H. Lee, H. S. Han, T. A. Duong, T. H. Dinh, C. W. Ahn, and J. S. Lee, "Stabilization of the Relaxor Phase by Adding CuO in Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3-SrTiO_3-BiFeO_3$ Ceramics," Ceram. Int., 43 [14] 11071-77 (2017).   DOI
21 W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3$-6mol% $BaTiO_3$," J. Appl. Phys., 110 [7] 074106 (2011).   DOI
22 V. D. N. Tran, H.-S. Han, C.-H. Yoon, J.-S. Lee, W. Jo, and J. Rodel, "Lead-Free Electrostrictive Bismuth Perovskite Ceramics with Thermally Stable Field-Induced Strains," Mater. Lett., 65 [17-18] 2607-9 (2011).   DOI
23 G. Wang, Y.-H. Hong, H. T. K. Nguyen, B. W. Kim, C. W. Ahn, H.-S. Han, and J.-S. Lee, "High Electromechanical Strain Properties in $SrTiO_3$-Modified $Bi_{1/2}Na_{1/2}TiO_3-KTaO_3$ Lead-Free Piezoelectric Ceramics under Low Electric Field," Sens. Actuators, A, 293 1-6 (2019).
24 K. Wang, A. Hussain, W. Jo, J. Rodel, and D. D. Viehland, "Temperature-Dependent Properties of $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-SrTiO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 95 [7] 2241-47 (2012).   DOI
25 H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94$(Bi_{1/2}Na_{1/2})TiO_3$-0.06$BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016).   DOI
26 T. Sebastian, I. Sterianou, I. M. Reaney, T. Leist, W. Jo, and J. Rodel, "Piezoelectric Activity of $(1-x)[0.35Bi(Mg_{1/2}Ti_{1/2})O_3-0.3BiFeO_3-0.35BiScO_3]-xPbTiO_3$ Ceramics as a Function of Temperature," J. Electroceram., 28 [2-3] 95-100 (2012).   DOI
27 C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016).   DOI
28 Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large Electrostrain near the Phase Transition Temperature of $(Bi_{0.5}Na_{0.5})TiO_3-SrTiO_3$ Ferroelectric Ceramics," Appl. Phys. Lett., 92 [26] 262904 (2008).   DOI
29 B. Liu, X. Liu, P. Li, F. Li, B. Shen, and J. Zhai, "Improving Piezoelectric Properties by Controlling Phase Structure and Crystal Orientation," RSC Adv., 7 [66] 41788-95 (2017).   DOI
30 S. Gebhardt, D.Ernst, B.Bramlage, O.Pabst, and A.Oberdorster, "Micro-Position Stages for Adaptive Optics Based on Piezoelectric Thick Film Actuators," J. Ceram. Sci. Technol., 06 [04] 285-90 (2015).