• Title/Summary/Keyword: Electromechanical strain

Search Result 71, Processing Time 0.031 seconds

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Dynamic Magneto-mechanical Behavior of Magnetization-graded Ferromagnetic Materials

  • Chen, Lei;Wang, Yao
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2014
  • This study investigates the dynamic magneto-mechanical behavior of magnetization-graded ferromagnetic materials Terfenol-D/FeCuNbSiB (MF). We measure the dynamic magneto-mechanical properties as a function of the DC bias magnetic field ($H_{dc}$). Our experimental results show that these dynamic magneto-mechanical properties are strongly dependent on the DC bias magnetic field. Furthermore, the dynamic strain coefficient, electromechanical resonance frequency, Young's moduli, and mechanical quality factor of Terfenol-D/FeCuNbSiB are greater than those of Terfenol-D under a lower DC bias magnetic field. The dynamic strain coefficient increases by a factor of between one and three, under the same DC bias magnetic field. In particular, the dynamic strain coefficient of Terfenol-D/FeCuNbSiB at zero bias achieves 48.6 nm/A, which is about 3.05 times larger than that of Terfenol-D. These good performances indicate that magnetization-graded ferromagnetic materials show promise for application in magnetic sensors.

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

Electromechanical Properties of PMN-PT-PZ Composition for High Power Device (고출력 압전소자를 위한 압전 세라믹(PMN-PT-PZ)조성의 전기기계적 특성)

  • Lee, K.W.;Hong, J.K.;Jeong, S.H.;Lee, J.S.;Park, C.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1723-1725
    • /
    • 1999
  • This paper is the study for piezoelectric properties of PMN-PT-PZ composition for high power piezoelectric device. It needs the properties such as high mechanical quality factor(Qm), high electromechanical coupling coefficient(kp) and high dielectric strain constant$(d_31)$, and the stable electromechanical properties under high vibration level. For acquiring this results, the value of x is changed in 0.1Pb$(Mn_{1/3}Nb_{2/3})O_3$+(0.9-x)$PbZrO_3+xPbTiO_3$ composition to find MPB(morphotropic phase boundary), and the piezoelectric constants is measured by resonance-antiresonance frequency method, based on IRE Standard. Also, it is measured as a function of the amount of additive, $Nb_2O_5$. When the composition is applied to high power device, the electromechanical properties is measured by laser vibrometer to confirm the reliablity under high vibration level. From these results, PMN-PT-PZ composition is shown excellent properties and capacity of application to high power device.

  • PDF

Prevalence and Genetic Characteristics of Japanese Encephalitis Virus among Mosquitoes and Pigs in Hunan Province, China from 2019 to 2021

  • Tang, Qiwu;Deng, Zaofu;Tan, Shengguo;Song, Guo;Zhang, Hai;Ge, Lingrui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1120-1125
    • /
    • 2022
  • Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is an importantly zoonotic, vector-borne virus widely prevalent in Asia. Although JE has been well controlled in China, its prevalence remains a huge threat to the pig industry as well as human health. Herein, we report on our molecular and serological investigations of JEV among pigs from different regions in Hunan Province of China from 2019 to 2021. Collectively, 19.27% (583/3026, 95% Confidential Interval (CI) 17.86-20.68) of sampled pigs were positive for JEV IgG antibody as revealed by indirect enzyme-linked immunosorbent assay, and the seroprevalence of JEV among pigs was significantly associated with the development stage and breeding scale (p < 0.01). Meanwhile, 10.99% (42/382, 95% CI 7.86-14.13) of tissue samples of pigs with suspected clinical symptoms of JE and 23.44% (15/64, 95% CI 13.06-33.82) of mosquito batches were JEV-positive via reverse polymerase chain reaction. In addition, the complete E gene sequences of 14 JEV strains identified in this study were amplified and sequenced. Phylogenetic analysis showed that all 14 JEV strains belonged to genotype I-b and displayed a distinct genetic relationship to the present JEV vaccine strain (SA14-14-2). In conclusion, our results revealed not only the severe prevalence of JEV in Hunan Province, but also that JEV I-b might be the predominant genotype in Hunan Province, suggesting therefore that effective measures for JE control are urgently needed.

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.

Analytical and experimental investigation of stepped piezoelectric energy harvester

  • Deepesh, Upadrashta;Li, Xiangyang;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.681-692
    • /
    • 2020
  • Conventional Piezoelectric Energy Harvesters (CPEH) have been extensively studied for maximizing their electrical output through material selection, geometric and structural optimization, and adoption of efficient interface circuits. In this paper, the performance of Stepped Piezoelectric Energy Harvester (SPEH) under harmonic base excitation is studied analytically, numerically and experimentally. The motivation is to compare the energy harvesting performance of CPEH and SPEHs with the same characteristics (resonant frequency). The results of this study challenge the notion of achieving higher voltage and power output through incorporation of geometric discontinuities such as step sections in the harvester beams. A CPEH consists of substrate material with a patch of piezoelectric material bonded over it and a tip mass at the free end to tune the resonant frequency. A SPEH is designed by introducing a step section near the root of substrate beam to induce higher dynamic strain for maximizing the electrical output. The incorporation of step section reduces the stiffness and consequently, a lower tip mass is used with SPEH to match the resonant frequency to that of CPEH. Moreover, the electromechanical coupling coefficient, forcing function and damping are significantly influenced because of the inclusion of step section, which consequently affects harvester's output. Three different configurations of SPEHs characterized by the same resonant frequency as that of CPEH are designed and analyzed using linear electromechanical model and their performances are compared. The variation of strain on the harvester beams is obtained using finite element analysis. The prototypes of CPEH and SPEHs are fabricated and experimentally tested. It is shown that the power output from SPEHs is lower than the CPEH. When the prototypes with resonant frequencies in the range of 56-56.5 Hz are tested at 1 m/s2, three SPEHs generate power output of 482 μW, 424 μW and 228 μW when compared with 674 μW from CPEH. It is concluded that the advantage of increasing dynamic strain using step section is negated by increase in damping and decrease in forcing function. However, SPEHs show slightly better performance in terms of specific power and thus making them suitable for practical scenarios where the ratio of power to system mass is critical.

Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics (BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구)

  • Kang, Yubin;Park, Jae Young;Devita, Mukhllishah Aisyah;Duong, Trang An;Ahn, Chang Won;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.