• 제목/요약/키워드: Electromechanical coupling

검색결과 363건 처리시간 0.023초

$MnO_2$가 첨가된 PZT-PSN압전세라믹의 압전 및 전기적특성 분석 (Ihe Electrical and Piezoelectric Characteristics of PZT-PSN ceramics added $MnO_2$)

  • 김성곤;김철수;박정호;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.161-164
    • /
    • 2001
  • In this paper, we investigated the dielectric and piezoelectric properties of Pb(Sb, Nb)O$_3$-Pb(Zr, Ti)O$_3$ ceramic(PSN) for piezoelectric transformer and actuator etc. Effect of MnO$_2$ addition on the PSN ceramic was investigated. Anisotropic properties of electromechanical coupling factor and piezoelectric properties proved to be varied with amount of MnO$_2$ impurity and sintering temperature. The electromechanical coupling factor k$_{p}$ of 0.38 and the mechanical quality factor Q$_{m}$ of 1944 were obtained from the specimen with 0.4 wt% MnO$_2$ sintered at 115$0^{\circ}C$ addition. Experimental results indicated that the PSN ceramic with MnO$_2$ impurity can be effectively used for piezoelectric transformer and actuator.tor.

  • PDF

Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-$PbZrO_3$계 세라믹의 유전특성에 관한 연구 (Study on Dielectric Characteristics of Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-$PbZrO_3$Ceramics))

  • 최창문;박정철;소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.13-16
    • /
    • 1994
  • In this paper, xPb(Zn$_{1/3}Nb_{2/3}$)$O_3$-yPbTiO$_3$-zPbZrO$_3$-(0.5wt%)MnO$_2$ ceramics were fabricated by the mixed oxide method sintered at $1250^{\circ}C$ for 2[hr] and then the deielectric, electromechanical coupling factor($K_{p}$ and mechanical coupling factor(Qm) properties were investigated. In 0.1PZN-0.45PT-0.45PZsample, dielectric properties and electromechanical coupling factor were 829 and 29%. In the case of 0.5PZN-0.45PT-0.50PZ sample, that was 101 according to mechanical quality facotr. molphotropic phase boundary(MPB) certained area which $PbTiO_3$addition quatity 40∼50[㏖%].

"Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가 (Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale)

  • 김영덕;김광일;정우철;김흥락;김동수
    • 비파괴검사학회지
    • /
    • 제22권4호
    • /
    • pp.354-360
    • /
    • 2002
  • NDT나 의료용 영장장치에 응용되는 압전복합재는 일반적인 세라믹이나 고분자 압전재료에 비하여 많은 장점을 가진다. 이들 응용분야에서는 전기기계결합계수가 높아야 하고 음향임피던스가 낮아야 한다. 그러나, 압전복합재의 횡방향 단위 크기가 조밀하지 못할 경우 횡방향으로 진행하는 판파에 의한 불필요한 진통이 표면에 발생하게 된다. 횡방향 단위 크기와 세라믹 체적비에 따른 압전 특성을 조사하기 위하여 PMN-PZT 세라믹과 Epofix 에폭시로 에폭시의 폭의 달리하면서 1-3형 압전복합채를 제작하였다. 제작된 1-3형 압전복합재의 두께방향 진동모드의 전기기계결합계 수, 음향임피던스는 각각 $0.36{\sim}0.64,\;9.8{\sim}22.7MRayl$ MRayl로 나타났으며, 횡방향 단위크기가 줄어들수록 횡방향 모드 공진 주파수가 증가하였다.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

$CeO_2$첨가에 따른 저온소결 PSN-PZT세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Low temperature sintering PSN-PZT ceramics with $CeO_2$ addition)

  • 정광현;류주현;오동언;송현선;정회승;박창엽;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.300-303
    • /
    • 2003
  • [ $0.91(PSN-PZT)-0.05BF-0.04PNW+0.3wt%MnO_2+0.6wt%CuO+xwt%CeO_2$ ] ceramics were fabricated with the variations of $CeO_2$ addition at the sintering temperature of $950^{\circ}C$ and their microstructure and dielectric and piezoelectric characteristics were investigated. As the amount of $CeO_2$ addition increased, the grain size, density and electromechanical coupling factor(kp) were increased and the mechanical quality factor(Qm) was decreased. At the $0.3wt%CeO_2$, density, grain size and electromechanical factor(kp) showed the maximum value of $7.87g/cm^3$, $3.22{\mu}m$ and 0.5, respectively. However, mechanical quality factor(Qm) showed the minimum value of 807 at the $0.5wt%CeO_2$.

  • PDF

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Piezoelectric and Acoustic Properties of Ultrasonic Sensor Using 2-2 Piezocomposites

  • Lee, Sang-Wook;Nam, Hyo-Duk;Ryu, Jeong-Tak;Kim, Yeon-Bo
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.215-218
    • /
    • 2005
  • We have investigated on the development of 2-2 piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 piezocomposites sensor which were fabricated using dice-and-fill technique for the different volume fraction of PZT. The resonance characteristics measured by an impedance analyzer were similar to the analysis of finite element method. The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics shows that the 2-2 piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

  • PDF

공기 매질에 의한 압전 세라믹스의 분극효과 (Poling Effect on Piezoeletric Ceramics for Air Medium)

  • 김용혁
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.464-470
    • /
    • 2010
  • A new method for the poling of piezoelectric ceramics with an air insulation medium in stead of silicon oil is described. A similar variation of electromechanical coupling coefficient $K_t$, for an air medium is observed in comparison to that of the material poled by the conventional poling method using a silicon oil medium. Different poling parameters such as dielectric constant $\varepsilon^T$ and frequency deviation ${\Delta}f$ are studied as well as the influence on the aging effect. The required poling factors to achieve the optimal piezoelectric characteristics are electric field, 2 kV/mm, temperature $100^{\circ}C$, and poling time 30 Min. From this result electric field 3 kV/mm atmosphere airs there being will be able to use with the polarization insulation medium about the piezoelectric material, confirmed.

Flux법에 의해 제조된 압전 세라믹(PZT)의 유전 및 압전특성 (Dielectric and Piezoelectric Properties on the Piezoceramics PZT by Molten Salt Synthesis)

  • 이수호;박준범;사공건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.721-723
    • /
    • 1992
  • The electrical resistivity and piezoelectric properties have been studied for Lead Zirconate-Titanate(PZT) with $Nb_2O_5$ dopant, fabricated from conventional mixed-oxide powders and molten salt synthesis. The resistivity and electromechanical coupling factor(Kp) were increased with increasing Nb contents. The reason for increasing of the electrical resistivity below the Curie Temperature(Tc), It is believed that the p-type electrical conduction in PZT is caused by the lead vacancies. The electromechanical coupling factor(Kr) and piezoelectric constant $d_{33}$ were improved by Nb additives. This behavior can be explained as a compensation effect and $Nb^{5+}$ can serve as a donar and contribute electrons to the conduction process. As a result, the optimized $Nb_2O_5$ dopants on the PZT specimens were 0.75 wt%.

  • PDF

Inter-Pillar 진동 모드를 고려한 1-3형 압전복합체의 구조 최적화 (Optimization of 1-3 Type Piezocomposite Structures Considering Inter-Pillar Vibration Modes)

  • 표성훈;김진욱;노용래
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.434-440
    • /
    • 2013
  • With polymer properties and ceramic volume fraction as design variables, the optimal structure of 1-3 piezocomposites has been determined to maximize the thickness mode electromechanical coupling factor. When the piezocomposite vibrates in a thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorates the performance of the piezocomposite. In this work, a new method to design the structure of the 1-3 type piezocomposite is proposed to maximize the thickness mode electromechanical coupling factor while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used for the optimal design, and the finite element analysis method was used for the analysis of the inter-pillar mode.