• Title/Summary/Keyword: Electromagnetic Scattering

Search Result 370, Processing Time 0.029 seconds

Electromagnetic Wave Propagation Characteristics from Large Scale Random Rough Surfaces (큰 규모의 불규칙 조면에 의한 전자파 전파 특성)

  • Yoon Kwang-Yeol;Chai Yong-Yoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.393-399
    • /
    • 2006
  • In this paper we applied a ray tracing method to estimate the scattering characteristics from large scale random rough surfaces. For the electromagnetic field evaluation, we have used the diffracted coefficient of the knife edge diffraction for the diffracted rays and Fresnel's reflection coefficients in connection with reflected rays. In addition, we examine to search for the traced rays using the imaging method which can be obtained all rays to arrived at receivers accurately and the diffracted field from rough surfaces is considered. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and delay spread characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.

A Study on Electromagnetic Scattering Analysis of Penetrable Objects Using Block Matrix Preconditioner(BMP) and IE-FFT (Block Matrix Preconditioner와 IE-FFT를 이용한 침투 가능한 구조물의 전자기 산란해석에 관한 연구)

  • Kang, Ju-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.614-621
    • /
    • 2019
  • In this paper, we presents the integral equation-fast Fourier transform(IE-FFT) and block matrix preconditioner (BMP) to solve electromagnetic scattering problems of penetrable structures composed of dielectric or magnetic materials. IE-FFT can significantly improve the amount of calculation to solve the matrix equation constructed from the moment method(MoM). Moreover, the iterative method in conjunction with BMP can be significantly reduce the number of iterations required to solve the matrix equations which are constructed from electrically large structures. Numerical results show that IE-FFT and block matrix preconditioner can solve electromagnetic scattering problems for penetrable objects quickly and accurately.

High performance metal-only fan-beam reflectarray with a delta source applicable for an electromagnetic fence

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The scattering solutions for multiple rectangular metallic gratings in a perfectly conducting plane excited by the TE and TM delta sources are presented using an overlapping T-block method. A reflectarray composed of rectangular metallic gratings shows fanbeam radiation patterns that are useful for an electromagnetic fence. The scattering characteristics of multiple rectangular gratings were computed in terms of total radiated power and antenna directivity. The design method of a fan-beam reflectarray to obtain high directivity was also compared with superdirective radiation and parabolic reflector phase.

An Approximate Scattering Analysis for Microstrip T-junction

  • Hyo-J. Eom;Park, Hyun-H.
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.65-67
    • /
    • 2002
  • An approximate, numerically-efficient solution for a microstrip T-junction is discussed. The microstrip T-junction is modeled as a rectangular waveguide with top/bottom electric walls and side magnetic walls. Comparisons of our solution with others show favorable agreements.

Electromagnetic Interference Analysis of an Inhomogeneous Electromagnetic Bandgap Power Bus for High-Speed Circuits

  • Cho, Jonghyun;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • This paper presents an analysis of the electromagnetic interference of a heterogeneous power bus where electromagnetic bandgap (EBG) cells are irregularly arranged. To mitigate electrical-noise coupling between high-speed circuits, the EBG structure is placed between parallel plate waveguide (PPW)-based power buses on which the noise source and victim circuits are mounted. We examine a noise suppression characteristic of the heterogeneous power bus in terms of scattering parameters. The characteristics of the dispersion and scattering parameters are compared in the sensitivity analysis of the EBG structure. Electric field distributions at significant frequencies are thoroughly examined using electromagnetic simulation based on a finite element method (FEM). The noise suppression characteristics of the heterogeneous power bus are demonstrated experimentally. The heterogeneous power bus achieves significant reduction of electrical-noise coupling compared to the homogeneous power buses that are adopted in conventional high-speed circuit design. In addition, the measurements show good agreement with the FEM simulation results.

Analysis of Scattering Characteristics of the Rectangular Waveguide with a Horizontal Conducting Post using Mode Matching Method and Generalized Scattering Method (모드매칭법과 일반산란계수법을 이용한 수평 금속봉을 갖는 구형 도파관의 산란 특성 해석)

  • 김원기;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.698-705
    • /
    • 2004
  • In this paper, we present the analysis method for a rectangular waveguide with horizontal conducting post using mode matching method and generalized scattering method. Scattering characteristics of a rectangular waveguide with the horizontal conducting post according to radius and height of the post are simulated by the proposed method. The simulated results by proposed method show good agreement with the measured results and the HFSS's results. Proposed method are easily applied to the design of a waveguide component with horizontal conducting posts.

Bistatic Scattering Cross-Section of a Spherical Conductor (완전도체구의 산란특성)

  • 우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.338-346
    • /
    • 1998
  • In-Building communication network is realized by spherical reflector installed on the ceiling and a pair of circularly polarized antennas. Before realizing the system, the scattering characteristics of a spherical conductor is computed and experimented. In this paper, the computational results using vector spherical wave equation and experimental results of the scattering characteristics of a spherical conductor are dicussed. From the results, the omnidirectional scattering level is confirmed and polarity difference over 13 dB is ensured in light region. With the base on omnidirectional scattering pattern of spherical conductor in light region, spherical reflector is effectable in as Wireless In-Building communication network.

  • PDF

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

Analysis of Electromagnetic Scattering from 3-Dimensional Dielectric Objects applying Muller Integral Equation (뮬러 적분방정식을 이용한 삼차원 유전체의 전자기 산란 해석)

  • Park Jae-Kwon;Kim Hyung-Jin;An Chong-Chul;Jung Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.961-968
    • /
    • 2004
  • In this paper, we present a set of numerical schemes to solve the Muller integral equation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional dielectric bodies by applying the method of moments(Mon. The piecewise homogeneous dielectric structure is approximated by planar triangular patches. A set of the RWG(Rao, Wilton, Glisson) functions is used for expansion of the equivalent electric and magnetic current densities and a combination of the RWG function and its orthogonal component is used for testing. Numerical results for a dielectric sphere are presented and compared with solutions obtained using other formulations.

Investigation of Phase Singularity Problem in Microwave Breast Tomography

  • Son, Seong-Ho;Simonov, Nikolai;Lee, Kwang-Jae;Jeon, Soon-Ik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.332-335
    • /
    • 2014
  • This paper investigates the phase singularity problem in microwave image reconstruction utilizing unwrapped phase data. The measured phases of the electric fields in most microwave measurement systems are wrapped. Thus, a certain phase unwrapping process is necessary for reconstruction of the image of a high contrast object. This unwrapping, however, is difficult in the presence of scattering nulls on/near the unwrapping path. At the null point, the phase value will be rendered, resulting in a poor image reconstruction. In this paper, we investigate the phase singularity arising from electromagnetic scattering nulls in microwave breast tomographic imaging. We then propose a transformation technique for the measured electric fields that avoids phase singularity.