• Title/Summary/Keyword: Electromagnetic Pulse Measurement

Search Result 59, Processing Time 0.025 seconds

Calibration of Frequency Response for a Sampling Oscilloscope (샘플링 오실로스코프의 주파수 응답특성 교정)

  • Cho, Chihyun;Lee, Dong-Joon;Lee, Joo-Gwang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.344-352
    • /
    • 2018
  • We herein propose a calibration method for a sampling oscilloscope. The proposed method can correct the systematic errors in the oscilloscope such as time-based distortion and impedance mismatch. In addition, it can accurately estimate the residual jitter that remains after a time-based correction and the scale factor that varies in accordance with the setting of the pulse generator. The proposed method is validated thorough the comparison and verification with the power meter, and the uncertainty of the measurement method is analyzed.

HEMP Analysis and Shielding Effectiveness (HEMP 분석과 방호 효율성)

  • Lee, Sun Yui;Kim, Jin Young;Park, Woo Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.20-24
    • /
    • 2013
  • In this paper, we introduce a concept of HEMP systems and analyze a shielding effectiveness by varying placements of the antenna elements. Maxwell's equations for the high frequency of the EMP is represented in the LOS. In order to investigate the effects of electromagnetic attenuations, a shielding room was constructed and employed to obtain measured data. Shielding effects were measured by changing frequency and the distance of receiving antenna. Each measured value was compared to U.S. standard and measuring method was simplified. shielding effects were measured by three different conditions of shielding room. Find the difference between forward measurement and reverse measurement and factors which affects the measurement in shielding room.

Measurement on the permittivity and propagation velocity of used insulation oil at UHF Band using time domain reflectometry (TDR을 이용한 극초단파 대역에서 사용 절연유의 유전율과 전파속도 측정)

  • Goo, Sun-Geun;Ju, Hyoung-Jun;Park, Ki-Jun;Han, Ki-Seon;Yoon, Jin-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2011-2014
    • /
    • 2008
  • We measured the permittivity and electromagnetic wave propagation velocity of used insulation oil with wide frequency range including ultra-high frequency by time domain reflectometry. The permittivity or propagation velocity is essential for locating discharge faults of oil filled power transformer. We derived 2.21 as a permittivity and $2.03{\times}10^8 m/s$ as a velocity from the measurement of pulse travelling time along a coaxial line filled with used insulation oil or air. The permittivity measurement system we designed shows high measurement accuracy and the convenience for field use.

A Study on Sample Frequency Channel Selection of Near-Field Receiving Measurement for the Active Phased Array Antenna for Mono-Pulse Accuracy (모노펄스 정확도를 위한 능동배열위상레이다의 근접전계 수신시험 표본 주파수 채널 선택에 대한 연구)

  • Kwon, Yong-Wook;Yoon, Jae-Bok;Yoo, Woo-Sung;Jang, Heon-Soon;Kim, Do-Yeol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • It is essential for the near-field receiving measurement to make beam pattern and check the performance of a active phased array antenna system. Also, we could obtain compensation value for mono-pulse function through the near-field receive test, however, if the radar has many frequency channel, the test would take long time and hard effort. So it is needed that frequency channels are selected for measurement and calculates the values for other frequency channels to improve efficiency in development and manufacture. In this case, the phase variations in sum and del channels would be checked. The phase measurement includes un-linear characteristic because of wrapping effect. Generally, radars have similar path length in sum and del channel, but if a radar has a electrical length gap between sum and del channel, errors could occur by phase's wrapping effect. In this paper, the interpolation method's error caused by electrical length gap is checked and the effective method for frequency channel selection to avoid wrapping effect is introduced.

Vulnerability Analysis of Network Communication Device by Intentional Electromagnetic Interference Radiation (IEMI 복사에 의한 네트워크 통신 장비의 취약성 분석)

  • Seo, Chang-Su;Huh, Chang-Su;Lee, Sung-Woo;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • This study analyzed the Vulnerability of Network Communication devices when IEMI is coupled with the Network System. An Ultra Wide Band Generator (180 kV, 700 MHz) was used as the IEMI source. The EUTs are the Switch Hub and Workstation, which are used to configure the network system. The network system was monitored through the LAN system configuration, to confirm a malfunction of the network device. The results of the experiment indicate that a malfunction of the network occurs as the electric field increases. The data loss rate increases proportionally with increasing radiating time. In the case of the Switch Hub, the threshold electric field value was 10 kV/m for all conditions used in this experiment. The threshold point causing malfunction was influenced only by the electric field value. The correlation between the threshold point and pulse repetition rate was not found. However, in case of the Workstation, it was found that as the pulse repetition rate increases, the equipment responds weakly and the threshold value decreases. To verify the electrical coupling of the EUT by IEMI, current sensors were used to measure the PCB line inside the EUT and network line coupling current. As a result of the measurement, it can be inferred that when the coupling current due to IEMI exceeds the threshold value, it flows through the internal equipment line, causing a malfunction and subsequent failure. The results of this study can be applied to basic data for equipment protection, and effect analysis of intentional electromagnetic interference.

Analysis of Design Elements in HEMP Systems (HEMP 시스템의 설계 요소 분석)

  • Lee, Sun Yui;Kim, Jin Young;Park, Woo Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, we explain the signal characteristics of HEMP and HEMP protection factors that affect the facilities are analyzed. We find the necessary elements of the physical facilities available for building. Shielding effects were measured by changing frequency and the distance of receiving antenna. Each measured value was compared to U.S. standard and measuring method was simplified. shielding effects were measured by three different conditions of shielding room. Find the difference between forward measurement and reverse measurement and factors which affects the measurement in shielding room.

Novel ZCS-PFM Series Resonant High Frequency Inverter for Electromagnetic Induction Eddy Current-Heated Roller

  • Mun, Sang-Pil;Kang, Shin-Chul;Kim, Soo-Wook;Nakaoka, Mutsuo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.28-36
    • /
    • 2008
  • This paper presents a novel prototype of zero current switching pulse frequency modulation (ZCS-PFM )high frequency series resonant inverter using IGBT power module for electromagnetic induction eddy current heated roller in copy and printing machines. The operating principle and unique features of this voltage-fed half bridge inverter with two additional soft commutation inductor snubber are presented including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

Design Method for Negative Group Delay Circuits Based on Relations among Signal Attenuation, Group Delay, and Bandwidth

  • Na, Sehun;Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2019
  • Typical negative group delay circuits (NGDC) are analyzed in terms of signal attenuation, group delay, and bandwidth using S-parameters. By inverting these formulations, we derive and present the design equations (for NGD circuit elements) for a desired specification of the two among the three parameters. The proposed design method is validated through simulation examples for narrow- and wide-band pulse inputs in the time and frequency domains. Moreover, an NGDC composed of lumped elements is fabricated at 1 GHz for measurement. As a function of frequency, the circuit-/EM-simulated and measured group delays are in good agreement. The provided simple NGDC design equations may be useful for many applications that require compensations of some signal delays.

The Design of Switching-Mode Power Amplifier and Ruggedness Characteristics Analysis of Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 스위칭 모드 전력증폭기 설계 및 전력증폭기의 Ruggedness 특성 분석)

  • Choi, Gil-Wong;Lee, Bok-Hyoung;Kim, Hyoung-Joo;Kim, Sang-Hoon;Choi, Jin-Joo;Kim, Dong-Hwan;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.394-402
    • /
    • 2013
  • This paper presents design, fabrication and ruggedness test of switching-mode power amplifier using GaN(Gallium Nitride) HEMT(High Electron Mobility Transistor) for S-band radar applications. The power amplifier is designed to Class-F for high efficiency. The input signal for the measurement of the power amplifier is pulse signal at $100{\mu}s$ pulse width and duty cycle of 10 %. The measurement results of the fabricated Class-F power amplifier are a power gain of 10.8 dB, an output power of 40.8 dBm, a power added efficiency(PAE) of 54.2 %, and a drain efficiency of 62.6 %, at the center frequency. We proposed reliability test set-up of a power amplifier for ruggedness test. And we measured output power and efficiency according to VSWR(Voltage Standing Wave Ratio) variation. The designed power amplifier achieved output power of 32.6~41.1 dBm and drain efficiency of 23.4~63 % by changing VSWR, respectively.

Design and Fabrication of an Ultra-low Partial Discharge Measurement System (극미소 부분방전 측정시스템의 설계 및 제작)

  • Seo, Hwang-Dong;Song, Jae-Yong;Moon, Seung-Bo;Kil, Gyung-Suk;Kwon, Jang-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.208-211
    • /
    • 2005
  • This paper presents an ultra-low partial discharge(PD) measurement system that has been accepted as a non-destructive method to estimate electrical insulation of low-voltage electric devices. The PD measurement system is composed of a coupling network, a low noise amplifier, and associated electronics. A shielding box is used to make a better condition against electromagnetic interference. A low cut-off frequency of the coupling network was 1MHz(-3 dB). Calibration tests on laboratory set-up have shown that the PD measurement system has a stable sensitivity of 11.4mV/pC. In an application experiment on a low-voltage induction motor(5HP), we could detect 0.77pC level of partial discharge pulse at the applied voltage of AC 664 V$_{peak}$.

  • PDF