• Title/Summary/Keyword: Electromagnetic Propagation Simulation

Search Result 63, Processing Time 0.031 seconds

A Novel Epsilon Near Zero Tunneling Circuit Using Double-Ridge Rectangular Waveguide

  • Kim, Byung-Mun;Son, Hyeok-Woo;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, an epsilon near zero (ENZ) tunneling circuit using a double-ridge rectangular waveguide (RWG) is proposed for the miniaturization of a waveguide component. The proposed ENZ channel and is located in the middle of the input-output RWG (IORWG). The ratio of the height to the width of the channel waveguide is very small compared to the IORWG. By properly adjusting the ridge dimensions, the tunneling frequency of the proposed ENZ channel can be lowered to near the cut-off frequency of the IORWG. For the proposed ENZ tunneling circuit, the approach adopted for extracting the effective permittivity, effective permeability;normalized effective wave impedance, and propagation constant from the simulated scattering parameters was explained. The extracted parameters verified that the proposed channel is an ENZ channel and electromagnetic energy is tunneling through the channel. Simulation and measurement results of the fabricated ENZ channel structure agreed.

Radio Propagation Characteristics in Subway Tunnel at 2.65 GHz (지하철 터널 환경에서 2.65 GHz 대역신호의 전파전파 특성)

  • Choi Myung-Sun;Kim Do-Youn;Jo Han-Shin;Mun Cheol;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.541-548
    • /
    • 2005
  • The research deals with the prediction and the measurement of electromagnetic wave propagation in rectangular shaped tunnels at f=2.65 GHz. The received power level was measured in the straight and the curved tunnel by using a spectrum analyzer and Satellite DMB mobile phone. Thus we have gotten the data for two cases, the straight and the curved tunnel whose radius is 300m. In addition, the prediction of wave propagation was conducted based on the ray-launching method, in same tunnel where measurement was performed. A good agreement of the measured and the predicted path loss could be confirmed. The measured path loss shows a marked difference in propagation loss: the path-loss exponent, 3.21, and 3.98, for a straight and a curved tunnel, respectively. The reason that path-loss exponent is high in a curved tunnel is that there is no direct wave but only the reflected waves, which attenuates rapidly with distance due to multiple reflections. Also the predicted path loss shows path loss exeponent, 3.2 and 3.95, for a straight and a curved tunnel which are similar to the simulation results.

Mode Matching Technique in a Cylindrical Cavity with Center Wire

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.143-146
    • /
    • 2018
  • The eigen value problem of a coaxial cavity and a modified pill box cavity is investigated using the mode matching technique. The coaxial cavity has a cylindrical cavity with beam ports and center conductor. The pill box cavity is the same as a coaxial cavity without center conductor. The electric field and magnetic field are formulated in propagation region and resonance region. The boundary and orthogonal conditions are applied to the electric and magnetic fields. We derived the eigen value equation by the proposed procedure in a coaxial cavity and a modified pill box cavity. The electromagnetic field of the real structure is disturbed by the coaxial wire. The effect of the coaxial wire in pill box cavity with beam ports increase the dominant resonant frequency. The coaxial line method of the coupling impedance is not adequate for a cylindrical cavity. The results of the mode matching technique and simulation agree well. The results confirm the proposed formulation is valid.

Impact of the human body in wireless propagation of medical implants for tumor detection

  • Morocho-Cayamcela, Manuel Eugenio;Kim, Myung-Sik;Lim, Wansu
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described.

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

Propagation Characteristic Analysis of Square and Gaussian Pulse Signals on the Microstrip Line (구형 및 가우시안 펄스신호의 마이크로스트립 선로상 전파특성 해석)

  • Park, Sun-Kuen;kim, Nam;Rhee, Sung-Yup;Choi, Jung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.384-394
    • /
    • 1996
  • The propagation properties of square and Gaussian pulse signals on the microstrip line are investigated by using proper conventional models to meet the frequency range of a pulse, accuracy, and geometrical requirements of the microstrip line. Numerical integration technique which has its accuracy and is easily simulated, is used to obtain the time domain response of pulse signals. The dispersion of pulse signals is analyzed regarding to the relative permittivity $\varepsilon_r$, substrate height h, strip width w of the microstrip line and pulse width $\tau$ of signal pulse. The simulation results show that small relative permittivity and small rationale of w/h are advantageous for the dispersion of the pulse signals, and that pulse signals with small bandwidth cause smaller dispersion. The results of this paper are compatible to the trade-off determination of relative permittivity, substrate height, strip width and pulse width of signal pulse when a design of MIC and MMIC is necessary.

  • PDF

Application of VSI-EBG Structure to High-Speed Differential Signals for Wideband Suppression of Common-Mode Noise

  • Kim, Myunghoi;Kim, Sukjin;Bae, Bumhee;Cho, Jonghyun;Kim, Joungho;Kim, Jaehoon;Ahn, Do Seob
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.827-837
    • /
    • 2013
  • In this paper, we present wideband common-mode (CM) noise suppression using a vertical stepped impedance electromagnetic bandgap (VSI-EBG) structure for high-speed differential signals in multilayer printed circuit boards. This technique is an original design that enables us to apply the VSI-EBG structure to differential signals without sacrificing the differential characteristics. In addition, the analytical dispersion equations for the bandgap prediction of the CM propagation in the VSIEBG structure are extracted, and the closed-form expressions for the bandgap cutoff frequencies are derived. Based on the dispersion equations, the effects of the impedance ratio, the EBG patch length, and via inductances on the bandgap of the VSI-EBG structure for differential signals are thoroughly examined. The proposed dispersion equations are verified through agreement with the full-wave simulation results. It is experimentally demonstrated that the proposed VSI-EBG structure for differential signaling suppresses the CM noise in the wideband frequency range without degrading the differential characteristics.

Partial EBG Structure with DeCap for Ultra-wideband Suppression of Simultaneous Switching Noise in a High-Speed System

  • Kwon, Jong-Hwa;Kwak, Sang-Il;Sim, Dong-Uk;Yook, Jong-Gwan
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.265-272
    • /
    • 2010
  • To supply a power distribution network with stable power in a high-speed mixed mode system, simultaneous switching noise caused at the multilayer PCB and package structures needs to be sufficiently suppressed. The uni-planar compact electromagnetic bandgap (UC-EBG) structure is well known as a promising solution to suppress the power noise and isolate noise-sensitive analog/RF circuits from a noisy digital circuit. However, a typical UC-EBG structure has several severe problems, such as a limitation in the stop band's lower cutoff frequency and signal quality degradation. To make up for the defects of a conventional EBG structure, a partially located EBG structure with decoupling capacitors is proposed in this paper as a means of both suppressing the power noise propagation and minimizing the effects of the perforated reference plane on the signal quality. The proposed structure is validated and investigated through simulation and measurement in both frequency and time domains.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Analysis on Induced Surge Voltage of Electric Car Line affected by Lightning in Rapid-Transit Railway System (고속철도시스템에서 낙뢰로 인해 전차선에 유도되는 서지전압의 해석)

  • Lee, Sung-Gyen;Lee, Kun-A;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.65-70
    • /
    • 2015
  • Lightning is one of hazards affecting the rapid-transit railway system. There are two effects, which are direct lightning surge to electric car line and induced lightning surge. Protection methods for the direct lightning surge are studied with various occasions, however, study of induced lightning surge is insufficient in spite of a large or small effects. In this paper, it is analysed the way that serge voltage is induced to electric car line by lightning strikes. By modeling the propagation process and the coupling phenomenon of electromagnetic wave produced by lightning strikes, it is achieved to make integrative circuit model combined with existing electric car model. The study is conducted into three different waveform of electromagnetic wave produced by lightning; rectangular wave, double exponential distribution wave, triangle wave. It is also simulated that the inducing serge is coupled to electric car line in an arbitrary location. The simulation results in that, when rapidly changing rectangular wave is supplied, maximum power is induced to electric car line.