• Title/Summary/Keyword: Electromagnetic Forming

Search Result 116, Processing Time 0.028 seconds

Development of Planar Active Phased Array Antenna for Detecting and Tracking Radar (화포탐지 레이다용 C-대역 평면형 능동위상배열 안테나 개발)

  • Kim, Ki-Ho;Kim, Hyun;Kim, Dong-Yoon;Jin, Hyung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.924-934
    • /
    • 2018
  • This paper describes the development and measurement results of C-band planar active phase array antenna for detecting and tracking radar(weapon-locating radar). The antenna is designed with 14 sub-arrays(12 main channels and 2 sidelobe blanking channels and approximately 3,000 elements of transmit-receive channel) to generate transmit and digital receive patterns. Using a near-field measurements facility, G/N, transmit patterns, and received patterns are measured. Receive patterns are implemented with digital beamforming by signal processing. The measurement results demonstrate that antenna design specifications were fulfilled.

Microstructure Control, Forming Technologies of Mg Alloys and Mg Scrap Recycling (마그네슘합금의 조직제어(組織制御)와 성형가공(成形加工) 및 스크랩 리싸이클링 기술(技術))

  • Shim, Jae-Dong;Lee, Dong-Hui
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • Recently, magnesium alloys are in the spotlight as a promising materials in the fields of automobile parts and electronic appliances due to their merits representing light weight, high specific strength, damping property, shielding of electromagnetic wave and so on. However, magnesium alloys show a poor formability at room temperature because magnesium has HCP crystal structure with limited slip planes and strong basal texture is formed during plastic deformation process such as rolling and extrusion. Therefore, many R&D efforts have been paid for improvement of formability through grain refinement, texture control and various forming technologies. This paper is giving an overview about recent achievements on control of microstructures, forming technologies and magnesium scrap recycling.

The Controller Design of a 2.4MJ Pulse Power Supply for a Electro-Thermal-Chemical Gun (전열화학포용 2.4MJ 펄스 파워 전원의 제어기 설계)

  • Kim, Jong-Soo;Jin, Y.S.;Lee, H.S.;Rim, Geun-Hie;Kim, J.S.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.511-517
    • /
    • 2006
  • The key issues in high power, high energy applications such as electromagnetic launchers include safety, reliability, flexibility, efficiency, compactness, and cost. To explore some of the issues, a control scheme for a large current wave-forming was designed, built and experimentally verified using a 2.4MJ pulse power system (PPS). The PPS was made up of eight capacitors bank unit, each containing six capacitors connected in parallel. Therefore there were 48 capacitors in total, with ratings of 22kV and 50kJ each. Each unit is charged through a charging switch that is operated by air pressure. For discharging each unit has a triggered vacuum switch (TVS) with ratings of 200kA and 250kV. Hence, flexibility of a large current wave-forming can be obtained by controlling the charging voltage and the discharging times. The whole control system includes a personal computer(PC), RS232 and RS485 pseudo converter, electric/optical signal converters and eight 80C196KC micro-controller based capacitor-bank module(CBM) controllers. Hence, the PC based controller can set the capacitor charging voltages and the TVS trigger timings of each CBM controller for the current wave-forming. It also monitors and records the system status data. We illustrated that our control scheme was able to generate the large current pulse flexibly and safely by experiments. The our control scheme minimize the use of optical cables without reducing EMI noise immunity and reliability, this is resulting in cost reduction. Also, the reliability was increased by isolating ground doubly, it reduced drastically the interference of the large voltage pulse induced by the large current pulse. This paper contains the complete control scheme and details of each subsystem unit.

Development of Printed Bow-tie Antenna with 3 ~ 5 GHz Broadband Characteristics for Testing the Electromagnetic Immunity of Automotive Electrical Components in the 5G Frequency Band (5G 주파수 대역의 자동차 전장품 전자기파 내성 평가를 위한 3 ~ 5 GHz 광대역 특성의 인쇄형 bow-tie 안테나 개발)

  • Ko, Ho-jin;Choi, Beom-jin;Park, Ki-hun;Woo, Jong-myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.137-147
    • /
    • 2020
  • This paper proposes printed bow-tie antennas with 3 ~ 5 GHz broadband characteristics were proposed for testing the electromagnetic immunity of automotive electrical components in the 5G frequency band. The antenna get -10 dB bandwidth in the 2.75 ~ 6 GHz frequency band and the broadside radiation pattern with S11 characteristic of -16.2 dB at resonant frequency. In testing electromagnetic immunity in the 5G mobile communication frequency band, the VSWR characteristic remained below 2.1, forming a level of 1 W as proposed by international standards. As a result, it is confirmed that the proposed antenna can be applied to antenna testing for electromagnetic immunity verification in the 5G mobile communication frequency band.

Single-Balanced Low IF Resistive FET Mixer for the DBF Receiver

  • Ko Jee-Won;Min Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.143-149
    • /
    • 2004
  • This paper describes characteristics of the single-balanced low IF resistive FET mixer for the digital beam forming(DBF) receiver. This DBF receiver based on the direct conversion method is designed with Low IF I and Q channel. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(IF) considered in this research are 1950 MHz, 1940 MHz and 10 MHz, respectively. Super low noise HJ FET of NE3210S01 is considered in design. The measured results of the proposed mixer are observed IF output power of -22.8 dBm without spurious signal at 10 MHz, conversion loss of -12.8 dB, isolation characteristics of -20 dB below, 1 dB gain compression point(PldB) of -3.9 dBm, input third order intercept point(IIP3) of 20 dBm, output third order intercept point(OIP3) of 4 dBm and dynamic range of 30 dBm. The proposed mixer has 1.0 dB higher IIP3 than previously published single-balanced resistive and GaAs FET mixers, and has 3.0 dB higher IIP3 and 4.3 dB higher PldB than CMOS mixers. This mixer was fabricated on 0.7874 mm thick microstrip $substrate(\varepsilon_r=2.5)$ and the total size is $123.1\;mm\times107.6\;mm$.

A Study on Modeling of Short-Circuliting Phenomena and Selection of Current Waveform for Reduction of Spatter in GMAW (가스 메탈 아크 용접에서 단락현상 모델링 및 스패터 감소를 위한 전류파형 선정에 관한 연구)

  • 황주호;문형순;나석주;한광수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 1996
  • With an expansion in automation of welding processes, emphasis has been shifted from other welding processes to the GMA welding. However, there is a problem with this process that the spatter occurs very frequently. In GMA welding, there are several types in the way of metal transfer from the electrode wire to the weld pool, which have a close relatonship with the spatter genetration. This study was concerned with the spatter occurring in the short-circuiting transfer. In welding with short-circuiting, the electromagnetic force formed by the welding current facilitatics the rupture of the metal bridge between the wire and workpiece and ensures the normal process of the welding process. However, the spatter can be genetrated from the droplet because of the upward magnetic force, when the droplet contacts with the weld pool. The passage of current through the bridge results in the accumulation of the thermal energy, which causes the bridge to explode in the final stage of short-circuiting, thus forming the spatter. Based on the above phenomena in conjunction with other experimental results published, the physical phenomenon related with the occurrence of spatter was modeled and the current waveform was investigated to reduce the spatter. Finally, the fuzzy rule based method was proposed to predict the time of short-circuiting and arcing in the metal transfer.

  • PDF

Study on Timing Characteristics of High-Voltage Pulse Generation with Different Charging Voltages

  • Lee, Ki Wook;Kim, Jung Ho;Oh, Sungsup;Lee, Wangyong;Kim, Woo-Joong;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • The time synchronization of each sub-unit of a pulsed generator is important to generate an output high-power radio frequency (RF) signal. To obtain the time synchronization between an input RF signal fed by an external source and an electron beam produced by an electric pulse generator, the influence of different charging voltages on a delay and a rise time of the output pulse waveform in the electric pulse generator should be carefully considered. This paper aims to study the timing characteristics of the delay and the rise time as a function of different charging voltages with a peak value of less than -35 kV in the high-voltage pulse generator, including a trigger generator (TG) and a pulse-forming line (PFL). The simulation has been carried out to estimate characteristics in the time domain, in addition to their output high-voltage amplitude. Experimental results compared with those obtained by simulation indicate that the delay of the output pulses of the TG and PFL, which are made by controlling the external triggering signal with respect to different charging voltages, is getting longer as the charging voltage is increasing, and their rise times are inversely proportional to the amplitude of the charging voltage.

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

A Study on the Design of High-Voltage Connector for Green Car using FEM (유한요소법을 이용한 친환경 자동차용 고전압 커넥터 설계에 관한 연구)

  • Kim, Sung-Woong;Choi, Jung-Wook;Kim, Hyeung-Rak;Kwon, Young-Seok;Kang, Nam-Jin;Choi, Kyung-Seok;Park, Hyung-Pil;Cha, Baeg-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.716-723
    • /
    • 2011
  • The battery capacity of electric/hybrid vehicle is much larger than present automobile. For that reason, the connector of Green Car should be designed to transmit the high-electric voltage. In addition, the electromagnetic wave should be shielded to protect communication and signal circuits. In this study, shielding performance of the connector was analyzed through electromagnetic shield analysis, and a connector of Green Car was designed using thermoelectrical analysis, which is capable of transmitting the high-electric power. In the design of connector structure, the improved stability and workability was considered.

Analysis and Design of Branch Line Coupler using Microstrip Lines with Overlay (덮개층이 있는 마이크로스트립 선로를 이용한 브랜치 선로 결합기 해석 및 설계)

  • 이승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.795-801
    • /
    • 2001
  • A method of miniaturizing branch line coupler is presented. The method utilizes the microstrip line with overlay(or superstrate). The frequency dependent characteristics, dispersion and characteristic impedance, of this line are obtained by Immitance method in spectral domain and Method of Line. The relevant spectral domain Green's function is given and used to obtain numerical results. The branch line couplers with overlays are designed and fabricated at 2 GHz. The experimental results show that the size of coupler with overlay(${epsilon}_r$=10.2) is 31.4 precent smaller than conventional coupler. This minimized coupler is suitable for Butler Matrix as feeder for mobile communication beam forming antenna.

  • PDF