• Title/Summary/Keyword: Electroluminescent(EL)

Search Result 183, Processing Time 0.025 seconds

Light-emitting property of the EL device with the thickness ratio of the HTL.ETL (HTL/ETL 두께 비율에 따른 EL 소자의 발광 특성)

  • 손철호;여철호;박정일;장선주;박종화;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.170-173
    • /
    • 2000
  • In this study, we have investigated the light-emitting property of the EL device with the thickness ratio of the HTL/ETL, which was 500$\AA$:500$\AA$, 400$\AA$:600$\AA$, 600$\AA$:400$\AA$. The ALq$_3$ was used for the ETL. We have studied the relation of voltage, contrase, efficiency for current density. Emission was observed above 10mA/$\textrm{cm}^2$ and luminance was measured to be 1030cd/$m^2$ at a current density of 100mA/$\textrm{cm}^2$ in 500$\AA$/500$\AA$ sample. A luminance of over 2500cd/$m^2$ was also observed after the final fabrication process in 500$\AA$/500$\AA$ sample

  • PDF

Emission Characteristics of Poly(3-alkylthiophene) with TPD Addition (TPD 첨가에 따른 poly(3-alkylthiophene)의 발광특성)

  • 서부완;김주승;구할본;이경섭;박복기;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.308-311
    • /
    • 2000
  • The organic electroluminescene (EL) device has gathered much interested because of its potential in materials and simple device fabrication. We fabricated EL device which have a mixed single emitting layer containing N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine [TPD] and poly(3-hexylthiophene) [P3HT]. The molar ratio between P3HT and TPD chaged with 1:1, 3:1, 5:1, 3:2 and 5:2. EL intensity of ITO/P3HT+TPD/Mg:In devices is enhanced by addition of TPD into P3HT. This can be explained that the energy transfer occurs from TPD to P3HT. Recombination probability increases in emitting layer because that TPD as hole transport material plays a role more injection hole and Mg:In (3.7eV) electrode has low work function make easily electron injection. ITO/P3HT+TPD(5:2)/Mg:In devices emit orange-red light at 28V.

  • PDF

Synthesis of New Blue OLEDs with Biphenyl Structure and Relationship between EL Efficiency and Drift Mobility (Biphenyl 구조를 가진 새로운 청색 유기 발광 재료의 합성 및 EL효율과 이동도의 관계에 대한 연구)

  • Lee, Tae-Hoon;Ryu, Jung-Yi;Kim, Tae-Hoon;Nam, Jang-Hyun;Park, Seong-Soo;Son, Se-Mo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.179-198
    • /
    • 2004
  • Organic electroluminescent devices are light-emitting diodes in which the active materials consist entirely of organic materials. Recently, many fluorescent organic materials have been reported and the study on synthesis and application of new organic light-emitting materials has been demanded. This paper reports the optical and electrical characteristics of OLEDs using novel polymers containing biphenyl structure. First, Optical properties of novel light-emitting biphenyl derivatives doped with poly(9-vinyl carbazole)(PVK) and emitted blue, bluish green color, which is attributed to the overlap area between PL spectrum of host(PVK) and absorption spectra of guests(polymer). This is correspondent with F$\"{o}$rster energy transfer process in the blends. And, OLED devices were fabricated using poly (3,4-ethylenedioxy thiophene) (PEDOT) as a hole injection material and tris-(8-hydroxyquinoline) aluminum ($Alq_3$) as an electron transporting material. EL devices fabricated as ITO/PEDOT/PVK doped with biphenyl derivatives/$Alq_3$/Li:Al and I-V-L chatacteristics and emitting efficiency of EL devices were examined. Finally, the drift mobility of PVK doped with biphenyl derivatives and $Alq_3$ were measured by TOF technique varying applied electric field. EL efficiency was increased as the ratio of hole mobility of PVK doped with biphenyl derivatives and electron mobility of $Alq_3$ was close to one.

  • PDF

Highly Efficient Blue-Light-Emitting Diodes Based on Styrylamine Derivatives End-capped with a Diphenylvinyl Group

  • Kim, Seul-Ong;Lee, Kum-Hee;Kang, Sun-Woo;Lee, Jin-Yong;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, we reported the synthesis and electroluminescent properties of blue fluorescent styrylamine derivatives end-capped with a diphenylvinyl group. A new series of styrylamine derivatives have been synthesized via the Horner-Wadsworth-Emmons reaction. To explore electroluminescent properties of these molecules, multilayer organic lighte-mitting devices with the configuration of ITO/NPB/1-5 doped in MADN/Bphen/Liq/Al were fabricated. All devices exhibited blue emissions with good EL performances. Among those reported herein, the device using dopant 5 exhibited a maximum luminance of $24,000\;cd/m^2$ at 11.0 V, a luminous efficiency of 12.5 cd/A at $20\;mA/cm^2$, a power efficiency of 6.50 lm/W at $20\;mA/cm^2$, and $CIE_{x,y}$ coordinates of (x = 0.173, y = 0.306) at 8.0 V, all of which demonstrate the superiority of these materials in blue OLEDs.

A Study on Powder Electroluminescent Device through Structure and Thickness Variation (구조 및 두께 변화에 따른 후막 전계발광 소자에 관한 연구)

  • Han, Sang-Mu;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1379-1381
    • /
    • 1998
  • Powder electroluminescent device (PELD) structured conventionally dielectric and phosphor layer, between electrode and their layer fabricated by screen printing splaying or spin coating method. To promote performance of PELDs, we approached the experiments for different structure and thickness variation of PELD. Thickness variation($30{\mu}m{\sim}130{\mu}m$) was taken. To investigate electrical and optical properties of PELDs, EL spectrum, transferred charge density using Sawyer-Tower's circuit brightness was measured. Variation of structure in PELDs was as follows: WK-1 (ITO/BaTiO3/ZnS:Cu/Silver paste), WK-2 (ITO/BaTiO3/ZnS:Cu/BaTiO3/ZnS:Silver paste), WK-3 (ITO/BaTiO3/ZnS:Cu/BaTiO3/Silver paste), WK-4(ITO/BaTiO3+ZnS:Cu/Silver paste) As a result, structure of the highest brightness appeared WK-4 possessed 60 ${\mu}m$ thickness. The brightness was 2719 cd/$m^2$ at 100V, 400Hz.

  • PDF

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

Emission Properties of Electro luminescent Devices using Poly(3-hexylthiophene) Deposited by LB Method (LB법으로 첨가한 Poly(3-hexylthiophene)을 발광층으로 사용한 전계발광소자의 발광특성)

  • 김주승;이경섭;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.757-761
    • /
    • 2001
  • We studied emitting properties of organic electroluminescent devices fabricated using the spin-coating and Langmuir-Blodgett(LB) technique. The LB technique has the advantage of precise control of the thickness better than spin-coating method. LB monolayer of poly(3-hexylthiophene)(P3HT) was deposited 27 layers onto the indium-tin-oxide(ITO) substrate as Y-type films by the vertical dipping method. In the absorption spectra, the λ$\_$max/ of P3HT-AA LB films and of spin-coating films showed about at 510, 545 and 590 nm corresponding to 2.43, 2.28, 2.10eV. And we observed that the turn-on voltage of devices deposited by LB method(10V) was higher than that of spin-coating method(8.5V) in voltage-current-luminance characteristic. In the logV-logJ characteristics of ITO/P3HT-AA LB/Al device, we confirmed that El device fabricated by LB method follows three conduction mechanisms: ohmic, space-charge-limited current(SCLC) conduction and trapped-carrier-limited space-charge current(TCLC) conduction.

  • PDF

Fabrication and Characteristics of Organic EL Devices using Conducting Polymer as an Electrode (전도성 고분자를 전극으로 한 유기 전기발광 소자의 제작 및 특성)

  • Lee, Kwang-Youn;Kim, Young-Kwan;Kwon, Oh-Kwan;Sohn, Byoung-Chong;Kim, Ok-Byoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.323-327
    • /
    • 1999
  • A water-soluble conducting polymer (CPP400 Paste) containing a derivative of polythiophene with several dopant was investigated as an anode material for organic electroluminescent devices. The device of ITO/CPP 400 Paste/TPD/$Alq_3$/Li:Al was fabricated, where CPP 400 Paste films were prepared by spin coating and TPD and $Alq_3$, films were prepared by vacuum evaporation. It was found that the turn-on voltage, current density, and luminance of the devices were dependent upon the thickness of CPP 400 Paste film in the Electroluminescent and current-voltage characteristics of the devices. This phenomena were explained by the energy level diagram of the device with the energy levels of the CPP400 Paste obtained by cyclic voltammetric method.

The Fabrication an dCharacteristic Analysis with Novel High Efficiency Organic Polymer Green Electroluminescence (새로운 고효울 유기 폴리머 녹색발광소자의 제작 및 특성 분석)

  • Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.1-7
    • /
    • 2001
  • Single-layer polymer green electroluminescent devices were fabricated with novel material synthesis by using moleculely-dispersed TTA and NIDI into the polymer PC(B79) emitter layer doped with C6 fluorescent dye which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PC:TTA:NIDI:C6/Ca/Al was employed and compared with various low work function cathode electrodes Ca and Mg metals. By adjusting the concentration of the fluorescent dye C6, low turn-on voltage of 2.4V was obtained, maximum quantum efficiency of 0.52% at 0.08mole% has been improved by about a factor of ~50 times in comparison with the undoped cell. The PL and EL colors can't be turned by changing the concentration of the C6 dopant. PL emission peaking was obtained at 495nm and EL emission peaking at 520nm with FWHM ~70nm

  • PDF

Red Emission Properties of Organic EL Having Hole Blocking Layer (정공블록킹층을 설치한 유기 EL의 적색발광특성)

  • Kim, Hyeong-Gweon;Lee, Eun-Hak
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.17-23
    • /
    • 2000
  • In this study, we prepared red organic light-emitting-diode(OLED) with a fluorescent dye(Sq)-doped and inserted between emission and cathode layer 1,3-bis(5-p-t-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD7) or/and tris(8-hydroxyquinoline) aluminum ($Alq_3$) layers for increasing electroluminescent(EL) efficiency. This inserting effect has been observed and EL mechanism characteristics have been examined. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine (TPD), and the host and guest materials of emission layer is $Alq_3$ and bis[1-methyl-3,3'-dimethyl-2-indorindiylmethyl] squaraine (Sq), respectively. For the inserting of $Alq_3$, emission efficiency increased. But we can not obtained highly pure red emission owing to the emission of inserting $Alq_3$ layer. The inserting of OXD7 makes hole block and accumulate. Because of increasing recombination probability of electron and hole, highly pure red color can be held. Simultaneously brightness characteristics and emission efficiency could improve.

  • PDF