• 제목/요약/키워드: Electroless deposition

검색결과 164건 처리시간 0.03초

Carbide분말상의 무전해 도금 (Electroless Deposition on Carbide Powders)

  • 이창언;최순돈
    • 한국표면공학회지
    • /
    • 제28권1호
    • /
    • pp.3-13
    • /
    • 1995
  • Electroless Ni and Cu platings were conducted on $B_4C$ and SiC. In the electroless Ni plating, the deposition rate on $B_4C$ was higher than on SiC. However, the electroless Cu deposition occured with high deposition rate regardless of the carbide substrates used in this study. Uniformity of the deposits was better in the electroless Cu deposition than in the electroless Ni deposition. In the topographies of the electroless depositions, Ni deposits have grown as colony, whereas Cu deposits have grown as fine individual grains.

  • PDF

Effect of Microstructure of Substrate on the Metallization Characteristics of the Electroless Copper Deposition for ULSI Interconnection Effect of Plasma

  • 홍석우;이용선;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.86-86
    • /
    • 2003
  • Copper has attracted much attention in the deep submicron ULSI metallization process as a replacement for aluminum due to its lower resistivity and higher electromigration resistance. Electroless copper deposition method is appealing because it yields conformal, high quality copper at relatively low cost and a low processing temperature. In this work, it was investigated that effect of the microstructure of the substrate on the electroless deposition. The mechanism of the nucleation and growth of the palladium nuclei during palladium activation was proposed. Electroless copper deposition on TiN barriers using glyoxylic acid as a reducing agent was also investigated to replace toxic formaldehyde. Furthermore, electroless copper deposition on TaN$\sub$x/ barriers was examined at various nitrogen flow rate during TaN$\sub$x/ deposition. Finally, it was investigated that the effect of plasma treatment of as-deposited TaN$\sub$x/ harriers on the electroless copper deposition.

  • PDF

Pb계 Ceramics 기지상의 무전해 Ni 도금 (Electroless Ni Plating on Pb-base Ceramics)

  • 민봉기;유종수;최순돈;신현준
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.487-495
    • /
    • 1999
  • In order to form metallic electrodes on PZT (Pb (Zr, Ti)O$_3$) ceramics, plating conditions for optimal electroless Ni deposition were investigated. Pb in PZT is the major component to inhibit the electroless deposition, because it plays a active role of catalytic poison in plating solution. Adhesion of the electroless Ni deposits is measured by push-pull scale test and peel test. Results such as deposition ability, deposition rate, and thickness of deposits showed in terms of concentration of etchant, composition of catalyzing solution, and composition and pH of electroless bath solution.

  • PDF

Comparison of Deposition Behavior and Properties of Cyanide-free Electroless Au Plating on Various Underlayer Electroless Ni-P films

  • Kim, Dong-Huyn
    • 한국표면공학회지
    • /
    • 제55권4호
    • /
    • pp.202-214
    • /
    • 2022
  • Internal connections between device, package and external terminals for connecting packaging and printed circuit board are normally manufactured by electroless Ni-P plating followed by immersion Au plating (ENIG process) to ensure the connection reliability. In this study, a new non-cyanide-based immersion and electroless Au plating solutions using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated on different underlayer electroless Ni-P plating layers. As a result, it was confirmed that the deposition behavior and film properties of electroless Au plating are affected by grain size and impurity of the electroless Ni-P film, which is used as the plating underlayer. Au plating on the electroless Ni-P plating film with a dense surface structure showed the highest bonding strength. In addition, the electroless Au plating film on the Ni-P plating film has a smaller particle size exhibited higher bonding strength than that on the large particle size.

비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향 (Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating)

  • 김동현;한재호
    • 한국표면공학회지
    • /
    • 제55권5호
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

착화제와 pH가 무전해 Ni-Co-P 도금 피막의 석출거동에 미치는 영향 (Effects of Complex Agents and pH on the Deposition Behavior of Electroless Ni-Co-P Film)

  • 최벽근;양승기;신지웅;황운석
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2014
  • Electroless plated Ni-Co-P films have been used to suppress the electromagnetic waves from magnetic recording media, and the suppression is known to be achieved with films made with optimized plating composition and plating condition. Effects of complexing agents on the deposition rate and bath stability of Ni-Co-P film were studied using sodium citrate, sodium tartrate and multi-complex agents containing both of them. Deposition of electroless Ni-Co-P platings was dependent upon the complexing agents. Deposition rate was twice when using sodium tartrate compared to that using sodium citrate. And it was slightly slower with multi-complex agents than with sodium tartrate, bath stability being declined in the former. Deposition rate increased with increasing pH until pH 11. Excellent bath stability and good deposition rate were obtained using multi-complex agent as sodium citrate 0.10 mol/L and sodium tartrate 0.15 mol/L in the electroless Ni-Co-P plating films.

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

무전해 니켈 도금액 제조 (Preparation of Stock Solution for Electroless Nickel)

  • 정승준;최효섭;박종은;손원근;박추길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.621-624
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed boards(PCR) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor meta1s, such as Al and Cu and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure. wear resistance, corrosion protection and thermal stability In this study fundamental aspects of electroless nickel deposition were studied with effort of complexeing agents of different kinds. Then the property of electroless deposit are controlled by the composition of the deposition solution the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

히드라진에 의한 무전해 흑색 니켈-아연 합금 도금에 대한 연구 (Study on Electroless Black Ni-Zn Plating Using Hydrazine as a Reducing Agent)

  • 오영주;정원용;이만승
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.393-397
    • /
    • 2003
  • The effects of the composition and additives on the blackening and deposition rate of electroless Ni-Zn plating have been examined. Hydrazine resulted in lower sheet resistance of the deposit than sodium hypophosphite. Zinc concentration more than 15 wt% and small amount of ammonium sulfate in the deposits were needed in obtaining Ni-Zn deposit with a black color. An optimum condition was obtained for the black Ni-Zn deposit at an appreciable deposition rate.

용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향 (The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns)

  • 이주열;김만;김덕진
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.