• Title/Summary/Keyword: Electroless Ni-B plating

Search Result 31, Processing Time 0.029 seconds

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board (DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구)

  • Kim, Hyung-Chul;Rha, Sa-Kyun;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Fabrication of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Plating (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극의 확산 방지막 제조)

  • Choi, Jae-Woong;Hong, Seok-Jun;Lee, Hee-Yeol;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • In this study, we have investigated the availability of the electroless Ni-B plating for a diffusion barrier of the bus electrode. The Ni-B layer of 1$\beta$: thick was electroless deposited on the electroplated Cu bus electrode for AC plasma display. The layer was to encapsulate Cu bus electrode to prevent from its oxidation and to serve as a diffusion barrier against Cu contamination of the transparent dielectric layer in AC plasma display. The microstructure of the as-plated barrier layer was made of an amorphous phase and the structure was converted to crystalline at about 30$0^{\circ}C$. The concentration of boron was about 5∼6 wt.% in the electroless Ni-B deposit regardless of DMAB concentration. The electroless Ni-B deposit was coated on the surface of the electroplated Cu bus electrode uniformly. And the electroless Ni-B plating was found to be an appropriate process to form the diffusion barrier.

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Electroless Deposition on Carbide Powders (Carbide분말상의 무전해 도금)

  • 이창언;최순돈
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.3-13
    • /
    • 1995
  • Electroless Ni and Cu platings were conducted on $B_4C$ and SiC. In the electroless Ni plating, the deposition rate on $B_4C$ was higher than on SiC. However, the electroless Cu deposition occured with high deposition rate regardless of the carbide substrates used in this study. Uniformity of the deposits was better in the electroless Cu deposition than in the electroless Ni deposition. In the topographies of the electroless depositions, Ni deposits have grown as colony, whereas Cu deposits have grown as fine individual grains.

  • PDF

Hydrogen Generation from $NaBH_4$ Hydrolysis on Co-Ni-P-B/Ni Foam Catalyst (Co-Ni-P-B/Ni foam 촉매에서 $NaBH_4$ 가수분해를 통한 수소 발생)

  • Park, Da-Ill;Kim, Tae-Gyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.383-389
    • /
    • 2010
  • Co-B, Co-P-B, Co-Ni-B and Co-Ni-P-B catalysts supported on Ni foam were prepared using electroless plating in the present study. The surface morphology of the catalysts/Ni foam was observed using SEM and EDS analysis. The Co-Ni-P-B/Ni foam catalyst showed the superior performance on hydrogen generation due to the uniform formation of catalyst particles on the Ni foam surface. The characteristics of hydrogen generation with Co-Ni-P-B/Ni foam catalyst was investigated at the variety of $NaBH_4$ and NaOH concentrations. Durability test was performed, resulting in the stable hydrogen generation for 6 hours.

Electroless Nickel-Boron Plating on p-type Si Wafer by DMAB (DMAB에 의한 P형 실리콘 기판 무전해 니켈-붕소 도금)

  • 김영기;박종환;이원해
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.206-214
    • /
    • 1991
  • In the basic study of selective electroless Ni plating of Si wafers, plating rate and physical properties are investigated to obtain optimum conditions of contact hole filling. Si wafers are excellently activated in the concentration of 0.5M IF, 1mM PdCl2, 2mM EDTA at $70^{\circ}C$, 90sec. The optimum condition of Ni-B deposition on p-type Si wafers is 0.1M NiSO4, 0.11M Citrate, $70^{\circ}C$, pH6.8, 8mM DMAB. The main factor in the sheet resistences variation of films is amorphous and on heat treating matrix was transformed into a stable phase (Ni+Ni3B) at $300-400^{\circ}C$. But pH or DMAB concentration in the plating solution doesn't play role of heat-affected phase change.

  • PDF

pH Effects of Electroless Ni Plating on ABS Plastics

  • Song, T.H.;Lee, J.K.;Ryoo, K.K.;Lee, Y.B.
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-29
    • /
    • 2004
  • Metal plated plastics are becoming more prevalent in materials of communication parts. A new technique MmSH is a process of injecting plastics to produce innovated physical properties compared to the conventional injection process. This study involves two ways of coating plastics Ni by electroless plating and varying bath and plasma treatment for improved adhesion strength between plating layer and surface. MmSH injection processed ASS with plasma treated after neutralization showed a superior adhesion force and a gloss and rate of deposition when it was in pH 7.5. On the other hand, conventional injection processed ASS was in pH 6.5.

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF

Electroless Ni Plating for Memory Device Metallization Using Ultrasonic Agitation (초음파 교반을 이용한 기억소자 Metallization용 무전해 Ni Plating)

  • 우찬희;우용하;박종완;이원해
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.109-117
    • /
    • 1994
  • Effect of ultrasonic agitation on the contact properties was studied in Ni electroless plating and Pd activation. P-type Si bare wafers were used as substrate and DMAB was used as reducing agent due to its good electrical properties, solderability and compatibility to substrate. In activation, high density Pd nuclei of small size were formed during ultra-sonic agitation compared to that of no stirring. In electroless plating, the plating rate was enhanced by 30∼90% by using ultrasonic agitation. In elecrtoless plating, inhibitor is the most effective additives in ultrasonic agitation. In this experi-ment, thiourea was used as inhibitor. The less the amount of the inhibitor, the more ultrasonic agitation efficiency. It is confirmed by SEM that Ni-B films formed by ultrasonic were coarser, less porous, and denser than those of no stirring. In ultrasonic agitation, boron content of the films was more than those of no stirring. In this case, the more DMAB concentration, the higher the temperature, the less pH, the more boron content. Resistivity of the films formed by ultrasonic agitation was higher than that of no strirring. As the content of boron was increased, the resistivity of the films was increased exponentially.

  • PDF