• Title/Summary/Keyword: Electroencephalographic activity

Search Result 20, Processing Time 0.032 seconds

Electroencephalography (EEG) based Toxicity Test of Algae Organic Matter on Zebrafish (조류기인 유기물질의 제브라피쉬에 대한 뇌파측정기반 독성평가)

  • Oh Sehyun;Jang hyeongjun;Cho Yunchul
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.223-230
    • /
    • 2023
  • Harmful algae blooms have become a serious environmental problem in major river basins in Korea. They are known to produce various algal organic matters (AOMs) including intracellular organic matters (IOMs) and extracellular organic matters (EOMs). Generally AOMs cannot be easily removed by coagulation/flocculation process in conventional drinking water plants. AOMs produced by blue-green algae also include various toxins such as Microcystins, Anatoxin-a, and Saxitoxin known to have harmful effects on living organisms in aquatic environment. In this study, toxic effects of EOMs produced by three different algae species (Microcystis sp., Anabaena sp., and Oscillatoria sp.) on zebrafish were investigated using electroencephalography (EEG) recording method, a technology for recording brain activity. Electroencephalographic changes in zebrafish revealed that a low EOM had a negative effect on zebrafish compared to both Anabaena sp. and Oscillatoria sp. at 30 ppm EOM exposures. This result might be due to Microcystins present in EOMs produced by Microcystis sp. As a result of power spectrum density anallysis, exposure to EOMs produced by Microcystis sp. caused a state of vigilance in zebrafish. This EEG based toxicity test can be used to examine effects of harmful materials at low levels on living organisms in an aquatic system.

Experimental Study of Retrograde Cerebral Perfusion During Hypothermic Circulatory Arrest (초저체온 순환정지시 역행성 뇌혈 관류의 실험적 연구)

  • 김치경
    • Journal of Chest Surgery
    • /
    • v.26 no.7
    • /
    • pp.513-520
    • /
    • 1993
  • Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch still poses one of the most complicated technical and tactical challenges in surgery. The use of total circulatory arrest[TCA] with profound hypothermia in the surgical treatment of aneurysmal dissection involving the ascending aorta and aortic arch has been reported as popular surgical methods. However, the safe period of prolonged circulatory arrest with hypothermia remains controversial and ischemic damage to the central nervous system and uncontrollable perioperative bleeding have been the major problem. We have found profound hypothermic circulatory arrest with retrograde cerebral perfusion via the superior vena cava to achieve cerebral protection. We experiment the aortic anastomosis in 7 adult mongrel dogs, using profound hypothermic circulatory arrest with continuous retrograde cerebral perfusion[RGCP] via superior vena cava. We also studied the extent of cerebral protection using above surgical methods, by gas analysis of retrograde cerebral perfusion blood and returned blood of aortic arch, preoperative, intraoperative and postoperative electroencephalography and microscopic findings of brain tissue. The results were as follows: 1. The cooling time ranged from 15 minutes to 24 minutes[19.71$\pm$ 3.20 minutes] ; Aorta cross clamp time ranged from 70 minutes to 89 minutes[79.86 $\pm$ 7.54 minutes] ; Rewarming time ranged from 35 minutes to 47 minutes[42.86$\pm$ 4.30 minutes] ; The extracorporeal circulation time ranged from 118 minutes to 140 minutes[128.43$\pm$ 8.98 minutes] [Table 2]. 2. The oxygen content in the oxygenated blood after RGCP was 12.66$\pm$ 1.25 ml/dl. At 5 minutes after the initiation of RGCP, the oxygen content of returnedlood was 7.58$\pm$ 0.21 ml/dl, and at 15 minutes 7.35$\pm$ 0.17 ml/dl, at 30 minutes 7.20$\pm$ 0.19 ml/dl, at 60 minutes 6.63$\pm$ 0.14 ml/dl [Table 3]. 3. Intraoperative electroencephalographic finding revealed low amplitude potential during hypothermia, and no electrical impulse throughout the period of circulatory arrest and RGCP. Electrical activity appeared after reperfusion, and the electroencephalographic reading also recovered rapidly as body temperature returned to normal [Fig. 2]. 4. The microscopic finding of brain tissue showed widening of the interfibrillar spaces. But there was no evidence of tissue necrosis or hemorrhage [Fig. 3]. We concluded the retrograde cerebral perfusion during hypothermic circulatory arrest is a simplified technique that may have a excellent brain protection.

  • PDF

Electroencephalographic Alpha Asymmetry in Major Depressive Disorder Patients With Anxiety Symptoms (불안을 동반한 주요우울장애 환자에 대한 뇌파 알파 비대칭의 특성 연구)

  • Lee, Jun-Seok;Yang, Byung-Hwan;Lee, So Hee;Lee, Seung-Min
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Objectives : Studies have reported differences between depressed adults and controls in quantitative measures of EEG alpha asymmetry, but, there are few using Korean subjects. So, the present study compared EEG regional alpha asymmetries of patients having major depressive disorder(MDD) and normal controls. Methods : The subjects in this study were 11 unmedicated unipolar depressed patients and 11 non-depressed, age matched controls. Resting EEG(eyes closed and eyes open) was recorded from each participant using 8 scalp electrodes. Beck Depression Inventory(BDI), 17-item Hamilton Depression Rating Scale(HDRS), Zung's Self-Rating Depression Scale(SDS) and Spielberger's State-Trait Anxiety Inventory(STAI) were used to evaluate depression and anxiety symptoms. Results : The severities of depression measured by self-report questionnaires were positively associated with those of anxiety(state and trait) ; The subjects were both anxious and depressed. Anxious-depressed patients differed from controls in alpha asymmetry at T4 channels. They showed evidence of greater activation over right than left temporal site. Conclusion : These findings are consistent with the previousely reported alpha asymmetry of depressed patients with an anxiety disorder. The failure to find the evidence of reduced right parietal activity in depression is presumed to be due to opposing effects of comorbid anxiety on parietotemporal activity.

  • PDF

Changes in Electroencephalographic Results and Heart Rate Variability after Exposure to Green Landscape Photographs Correlated with Color Temperature and Illumination Level

  • Lee, Min Jung;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.639-649
    • /
    • 2021
  • Background and objective: Various images from visual display terminals (VDTs) as well as living lighting are important parts of our daily life; thus, properly controlling the lighting environment - that is, illuminance, color temperature and good images from VDTs - can have a substantial effect on improving the mental health and work efficiency in everyday life. We examined electroencephalography (EEG) and heart rate variability (HRV) responses to various lighting conditions in 25 university students as they viewed images of a green landscape or traffic congestion. Methods: EEG was performed in darkness and when the room was illuminated with 10 different light-emitting diode (LED) color temperatures, while the EEG and HRV responses to green landscape or traffic congestion image stimuli were measured in darkness and during room illumination with three different LED color temperatures. Results: We found a significant difference between darkness and high LED illumination (400 lx) at 7 (CZ, F4, FZ, O1, O2, OZ, and T6) of 30 channels, while the alpha wave activity increased during darkness. In the second experiment, the green landscape image stimuli in the 30 lx-2600 K lighting condition elicited theta wave activity on the EEG, whereas the traffic congestion image stimuli under high LED illumination elicited high beta and gamma wave activities. Moreover, the subjects exhibited better stress coping ability and heart rate stability in response to green landscape image stimuli under illuminated conditions, according to their HRV. Conclusion: These results suggest that lower color temperatures and illumination levels alleviate tension, and that viewing green landscape image stimuli at low illumination, or in darkness, is effective for reducing stress. Conversely, high illumination levels and color temperatures are likely to increase tension and stress in response to traffic congestion image stimuli.

Comparison of Electroencephalographic Changes during Mental Practice and Action Observation in Subjects with Forward Head Posture (상상연습과 동작관찰 동안 전방머리자세의 대뇌겉질 활성도 비교)

  • Yang, Hoesong;Kang, Hyojeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the difference in motor cortical excitability during mental practice and action observation in subjects with forward head posture. Methods : This study was performed in two groups, a forward head posture group (n=17) and a normal posture group (n=17). Electroencephalography (EEG) was conducted to investigate cerebral cortex activity, and six electrodes were attached to Fp1, Fp2, C1, C2, C3, and C4 to measure the relative alpha power, relative beta power, relative gamma power, and mu rhythms. The subjects were requested to perform the four different conditions, which were eye opening, eye closing, mental practice, and action observation for 300 seconds. Results : The results showed that the relative alpha waves showed a significant difference between the normal and forward head posture groups in the C1, C2, C3, and C4 regions with the eyes open (p<.05). The relative beta waves also showed a significant difference between the two groups in the Fp1 and Fp2 regions during action observation (p<.05). The relative gamma waves were significantly different between the normal and forward head posture groups in the Fp1 and Fp2 regions during action observation (p<.05) in C1, C2, and C3 with eyes closed (p<.05) and in C1, C2, C3, and C4 with eyes open (p<.05). Conclusion : The results of this study showed that EEG change in the forward head posture group was different from that in the normal control group in action observation rather than in mental practice. Therefore, we are expected to provide a neurophysiological basis for applying action observation to motor skill learning during exercise for correcting forward head posture.

Variations in Neural Correlates of Human Decision Making - a Case of Book Recommender Systems

  • Naveen Z. Quazilbash;Zaheeruddin Asif;Saman Rizvi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.775-793
    • /
    • 2023
  • Human decision-making is a complex behavior. A replication of human decision making offers a potential to enhance the capacity of intelligent systems by providing additional user assistance in decision making. By reducing the effort and task complexity on behalf of the user, such replication would improve the overall user experience, and affect the degree of intelligence exhibited by the system. This paper explores individuals' decision-making processes when using recommender systems, and its related outcomes. In this study, human decision-making (HDM) refers to the selection of an item from a given set of options that are shown as recommendations to a user. The goal of our study was to identify IS constructs that contribute towards such decision-making, thereby contributing towards creating a mental model of HDM. This was achieved through recording Electroencephalographic (EEG) readings of subjects while they performed a decision-making activity. Readings from 16 righthanded healthy avid readers reflect that reward, theory of mind, risk, calculation, task intention, emotion, sense of touch, ambiguity and decision making are the primary constructs that users employ while deciding from a given set of recommendations in an online bookstore. In all 10 distinct brain areas were identified. These brain areas that lead to their respective constructs were found to be cingulate gyrus, precentral gyrus, inferior parietal lobule, posterior cingulate, medial frontal gyrus, anterior cingulate, postcentral gyrus, superior frontal gyrus, inferior frontal gyrus, and middle frontal gyrus (also referred to as dorsolateral prefrontal gyrus (DLPFC)). The identified constructs would help in developing a design theory for enhancing user assistance, especially in the context of recommender systems.

Effects of a High-Intensity Interval Physical Exercise Program on Cognition, Physical Performance, and Electroencephalogram Patterns in Korean Elderly People: A Pilot Study

  • Sun Min Lee;Muncheong Choi;Buong-O Chun;Kyunghwa Sun;Ki Sub Kim;Seung Wan Kang;Hong-Sun Song;So Young Moon
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • Background and Purpose: The effects of high-intensity interval training (HIIT) interventions on functional brain changes in older adults remain unclear. This preliminary study aimed to explore the effect of physical exercise intervention (PEI), including HIIT, on cognitive function, physical performance, and electroencephalogram patterns in Korean elderly people. Methods: We enrolled six non-dementia participants aged >65 years from a community health center. PEI was conducted at the community health center for 4 weeks, three times/week, and 50 min/day. PEI, including HIIT, involved aerobic exercise, resistance training (muscle strength), flexibility, and balance. Wilcoxon signed rank test was used for data analysis. Results: After the PEI, there was improvement in the 30-second sit-to-stand test result (16.2±7.0 times vs. 24.8±5.5 times, p=0.027), 2-minute stationary march result (98.3±27.2 times vs. 143.7±36.9 times, p=0.027), T-wall response time (104.2±55.8 seconds vs.71.0±19.4 seconds, p=0.028), memory score (89.6±21.6 vs. 111.0±19.1, p=0.028), executive function score (33.3±5.3 vs. 37.0±5.1, p=0.046), and total Literacy Independent Cognitive Assessment score (214.6±30.6 vs. 241.6±22.8, p=0.028). Electroencephalography demonstrated that the beta power in the frontal region was increased, while the theta power in the temporal region was decreased (all p<0.05). Conclusions: Our HIIT PEI program effectively improved cognitive function, physical fitness, and electroencephalographic markers in elderly individuals; thus, it could be beneficial for improving functional brain activity in this population.

Electroencephalographic brain frequency in athletes differs during visualization of a state of rest versus a state of exercise performance: a pilot study

  • Berk, Lee;Mali, Deeti;Bains, Gurinder;Madane, Bhagwant;Bradburn, Jessica;Acharya, Ruchi;Kumar, Ranjani;Juneja, Savleen;Desai, Nikita;Lee, Jinhyun;Lohman, Everett
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • Objective: Psychomotor imagery has been widely used to improve motor performance and motor learning. Recent research suggests that during visualization, changes occur in neurophysiological networks that make physical practice more effective in configuring functional networks for skillful behaviors. The aim of our pilot study was to determine if there was change and to what extent there was differentiation in modulation in electroencephalography (EEG) frequencies between visualizing a state of rest and a state of exercise performance and to identify the preponderant frequency. Design: Quasi-experimental design uncontrolled before and after study. Methods: EEG brain wave activity was recorded from 0-40 Hz from nine cerebral cortical scalp regions F3, Fz, F4, C3, Cz, C4, P3, POz, and P4 with a wireless telemetric EEG system. The subjects, while sitting on a chair with eyes closed, were asked to visualize themselves in a state of routine rest/relaxation and after a period of time in a state of their routine exercise performance. Results: The gamma frequency, 31-40 Hz, (${\gamma}$) was the predominant wave band in differentiation between visualizing a state of rest versus visualizing a state of exercise performance. Conclusions: We suggest these preliminarily findings show the EEG electrocortical activity for athletes is differentially modulated during visualization of exercise performance in comparison to rest with a predominant ${\gamma}$ wave band frequency observed during the state of exercise. Further controlled experimental studies will be performed to elaborate these observations and delineate the significance to optimization of psychomotor exercise performance.

Fragrance Chemicals in the Essential Oil of Mentha arvensis Reduce Levels of Mental Stress (박하(Mentha arvensis) 향료의 향기성분이 정신적 스트레스 완화에 미치는 효과)

  • Cho, Haeme;Sowndhararajan, Kandhasamy;Jung, Ji-Wook;Jhoo, Jin-Woo;Kim, Songmun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.933-940
    • /
    • 2013
  • The aim of this work was to determine the chemical composition of essential oil from aerial partsof Mentha arvensis L. f. piperascens (MAO) and to evaluate the effect of its fragrant chemicals on electroencephalographic (EEG) activity of human brain. The MAO was obtained by supercritical $CO_2$ extraction. The maximum yield was 2.38% at conditions of $70^{\circ}C$ and 200 bar. There were 32 volatile chemicals with 6 alcohols (67.11%), 13 hydrocarbons (17.05%), 9 esters (11.50%), 2 ketones (7.16%), 1 oxide (2.77%), and 1 aldehyde (0.56%). The major components were (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%), and 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%). Results of the EEG study showed that inhalation of MAO significantly changed the EEG power spectrum values of relative gamma, relative fast alpha, and spectral edge frequency 90%. During the inhalation of MAO, the value of relative fast alpha was significantly increased (p<0.05). On the other hand, the values of gamma and the spectral edge frequency 90% were significantly decreased (p<0.05). The present study suggests that fragrant chemicals of essential oil of M. arvensis reduce the level of mental stress and that they could be used in the treatment of psychophysiological disorders.

EEG Changes due to Low-Frequency Electrical Stimulation to the BL62 and KI6 of Elderly Women (노년 여성의 신맥.조해 저주파 자극이 뇌파에 미치는 영향)

  • Lee, Sanghun;Choi, Kwang-Ho;Cho, Seong Jin;Choi, Sun-Mi;Hong, Kwon Eui;Ryu, Yeon-Hee
    • Korean Journal of Acupuncture
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • Objectives : This study aimed to investigate the general effects of low-frequency electrical stimulation of the ankle joint acupuncture points(BL62 and KI6) on the brain waves of elderly women as a pilot study to figure out the possibility of candidate non-invasive and non-chemical stimulation method for the enhancing the brain function. Methods : A randomized, controlled, double-blinded clinical trial was performed in 31 healthy women(mean age, 54.5 years) within a treatment duration of 12 sessions. In the experimental group, low-frequency electrical stimulation was applied using the maximum range of the individual insensible strength(mean current, $0.04{\mu}A$). The control group received sham stimulation. The background electroencephalographic activity was measured before and after the12 sessions. Results : After 12 sessions of stimulation, the relative power of the alpha wave increased(32 of 32 channels: significant difference in 11 channels, p<0.05); the theta(30 of 32 channels: significant difference in 10 channels, p<0.05), beta(31 of 32 channels), and gamma(30 of 32 channels: significant difference in 7 channels, p<0.05) powers were also decreased compared with the sham group. Conclusions : Electrical stimulation on the ankle joint acupuncture points(BL62 and KI6) seemed to stabilize the elderly women brain by inducing the alpha power and reducing beta, theta, and gamma powers. These results provide insight into the action mechanism of the stimulation and can assist the future developement of a non-invasive and non-chemical treatment technique for stressor related cognitive problems.