This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.
일반적으로 EEG 신호 분석은 의료 진단 및 재활 공학에 적용하여 뇌-컴퓨터 인터페이스 연구에 널리 사용되는 뇌 자극을 기록하는 객관적인 모드를 제공할 수 있는 능력 때문에 여러 연구의 주제가 되어 왔습니다. 본 연구에서는 뇌전도 측정하기 위한 뇌파 수신 하드웨어 개발 및 처리 시스템 구현을 통해 서버와 데이터 처리로 분류하여 개발을 진행하였다. 뇌전도를 이용한 뇌-컴퓨터 인터페이스 구현의 중간단계 연구로 진행되었으며, 측정된 뇌전도 데이터에 따라 사용자의 팔의 움직임을 예측하는 형태로 구현되었다. 네 개의 전극으로부터의 입력을 아날로그-디지털 변환기를 통해 뇌전도 측정을 수행하였다. 이를 통신 과정을 거쳐 서버에 전송한 뒤, 서버에서 합성곱 신경망 모델로 뇌전도 입력을 분류하여 그 결과를 사용자 단말로 표시하는 시스템의 흐름을 설계하고 구현하였다.
본 연구는 12주간의 핀수영 운동이 남자 청소년의 뇌파, 혈압 및 안정 시 심박수에 미치는 영향을 규명하는데 그 목적이 있다. 18명의 남자 청소년을 핀수영 운동집단 9명과 통제집단 9명으로 구성하였다. 핀수영 운동집단은 12주간 주3회 60분씩 핀수영을 실시하였다. 측정된 자료 중 뇌파변인들은 이원변량 반복측정 분산분석(Two way repeated measures ANOVA)에 의해 분석되었고 안정 시 심박수와 혈압 변인들의 분석은 공분산 분석(ANCOVA)과 대응표본 t-test(Paired t-test)를 실시하였다. 결과적으로 핀수영 집단에서는 Alpha파와 SMR파의 유의한 증가가 나타났고, Theta파의 유의한 감소가 나타났다. 통제집단에서는 Alpha파의 유의한 감소가 나타났다. Alpha파, Theta파와 SMR파 모두에서 시기와 집단 간 유의한 상호작용이 나타났다. 또한 핀수영 집단에서 안정 시 심박수, 수축 및 이완기 혈압의 유의한 감소가 나타났고 안정 시 심박수와 수축기 혈압에서 집단 간 유의한 차이가 나타났다. 하지만 이완기 혈압에서는 집단 간 유의한 차이가 나타나지 않았다. 이상의 결과로 12주간의 핀수영 운동은 청소년의 뇌파, 안정 시 심박수 및 혈압에 긍정적인 영향을 미친 것으로 보인다.
Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.
Objectives : The aim of this study was to examine the effects of Acupuncture at the GV20 and GV22 on normal human beings using power spectrum analysis. Methods : Electroencephalogram(EEG) power spectrum exhibits site-specific and state-related differences in various frequency bands. 8 channels Background Electroencephalogram (EEG) was carried out in 30 subjects(24 females and 4 males). Results : In ${\delta}$(theta) band, the power values decreased significantly at the 8-channel average value(p=0.03) and especially at T3(p=0.02), T4(p=0.001) and P3(p=0.03). In ${\alpha}$(alpha) band, the power values have no significant changes. In ${\beta}$(beta)band, the power values increased significantly at the 8-channel average value (p=0.02) and especially at T4(p=0.003), P3 (p= 0.03) and P4(0.02). In ${\beta}/{\delta}$(beta/theta) ratio, the value increased significantly at the 8-channel average value(p=0.002) and especially at Fp2(p=0.05), F4(p=0.007), T3(0.012), T4(0.005), P3 (0.007) and P4(0.03) Conclusions : Through this data, we conclude that acupuncture at the GV20 and GV22 on normal human beings could have possibility to awake the cerebral cortex by the functional mechanism.
In this study, we proposed a method for electroencephalogram (EEG) classification using invariant CSP at special channels for improving the accuracy of classification. Based on the naive EEG signals from left and right hand movement experiment, the noises of contaminated data set should be eliminate and the proposed method can deal with the de-noising of data set. The considering data set are collected from the special channels for right and left hand movements around the motor cortex area. The proposed method is based on the fit of the adjusted parameter to decline the affect of invariant parts in raw signals and can increase the classification accuracy. We have run the simulation for hundreds time for each parameter and get averaged value to get the last result for comparison. The experimental results show the accuracy is improved more than the original method, the highest result reach to 89.74%.
In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.
운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호 분석이 많이 적용되는데 그중에서도 뇌파(Electroencephalogram, EEG)와 안구전도(Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜를 바탕으로 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하였고 선형예측(Linear Predictive Coding, LPC) 계수와 Support Vector Machine(SVM)을 이용한 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)에서도 96.5%의 높은 분류 결과를 얻어 짧은 순간에 일어날 운전시 돌발 상황을 실시간으로 예측할 수 있는 가능성을 보였다.
Coherence can be used to evaluate the functional cortical connections between the motor cortex and muscle. This study is to find coherence between EEG (electroencephalogram) and EMG (electromyogram) evoked by movement of a hand. Seven healthy participants were asked to perform thirty repetitive movement of right hand for ten seconds with rest for ten seconds. Specific feature of EEG components has been extracted by ICA (independent component analysis) and coherence between EEG and EMG was analyzed from data measured EEG in five local areas around central part of head and EMG in flexer carpri radialis muscle during grabbing movement. Coherence between EEG and EMG was successfully obtained at 0.025 confidence limit during hand movement and showed significant difference between rest and movement at 13-18Hz.
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권4호
/
pp.277-282
/
2015
Braincomputer interface (BCI) technology is making advances in the field of humancomputer interaction (HCI). To improve the BCI technology, we study the changes in the electroencephalogram (EEG) signals for six levels of grip strength: 10%, 20%, 40%, 50%, 70%, and 80% of the maximum voluntary contraction (MVC). The measured EEG data are categorized into three classes: Weak, Medium, and Strong. Features are then extracted using power spectrum analysis and multiclass-common spatial pattern (multiclass-CSP). Feature datasets are classified using a support vector machine (SVM). The accuracy rate is higher for the Strong class than the other classes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.