• 제목/요약/키워드: Electrode spacing

Search Result 100, Processing Time 0.026 seconds

Fabrication and Characterization of Multi-Channel Electrode Array (MEA) (다중 채널 전극의 제작 및 특성 평가)

  • Seong, Rak-Seon;Gwon, Gwang-Min;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.423-430
    • /
    • 2002
  • The fabrication and experimentation of multi-channel electrodes which enable detecting and recording of multi-site neuronal signals have been investigated. A multi-channel electrode array was fabricated by depositing 2000${\AA}$ thick Au layer on the 1000${\AA}$ thick Ti adhesion layer on a glass wafer. The metal paths were patterned by wet etching and passivated by depositing a PECVD silicon nitride insulation layer to prevent signals from intermixing or cross-talking. After placing a thin slice of rat cerebellar granule cell in the culture ring located in central portion of the multi-channel electrode plate, a neuronal signal from an electrode which is in contact with the cerebellar granule cell has been detected. It was found that the electrode impedance ranges 200㏀∼1㏁ and the impedance is not changed by cleaning with nitric acid. Also, the impedance is inversely proportion to the exposed electrode area and the cross-talk is negligible when the electrode spacing is bigger than 600$\mu\textrm{m}$. The amplitude and frequency of the measured action potential were 38㎷ and 2㎑, which are typical values. From the experimental results, the fabricated multi-channel electrode array proved to be suitable for multi-site neuronal signal detection for the analysis of a complicated cell network.

A study on the discharge characteristics of liquid nitrogen using at cryogenic cable (극저온 전력케이블을 액체질소에 대한 방전특성에 관한 연구)

  • 이현동;주재현;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.125-129
    • /
    • 1996
  • This study describes that electrical breakdown of liquid nitrogen which is influenced with bubble has been investigated as liquid nitrogen is used coolant of high temperature(T/sub c/) superconductivity. In order to investigate breakdown of liquid nitrogen, we formed electrode system of parallel and vertical configuration toward gravitutional direction. In case of changing with electrode configuration of equal electrode and gap spacing in uniform and nonuniform electric field bubble behavior is changed. In result of that, breakdown voltage is changed. Therefore, this study proved that electrode configuration must be formed the smallest existing probability of bubble between two electrodes in order to increase breakdown strength of liquid nitrogen at atmosphere pressure.

  • PDF

A Study of Electrolytic Ozone Generator for Ozone Asher (Ozone Asher용(用) Ozone Generator 개발연구(開發硏究))

  • Moon, Jae-Duk;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.648-651
    • /
    • 1993
  • A parallel plate type electrolytic ozone generator for ozone asher has been fabricated and studied, and 4 kinds of ozone generation anode electrode having different slits have also been investigated. It is found that there were optimum conditions for the slits of electrode, which, however, controls the field in the interelectrode spacing, and allows sideflow waterpaths through the slits in the electrode. As a result, the generated ozone concentrations of A, B, C and D type electrode showed 2.2, 1.3, 1.5 and 3.0 ppm for 400 ml/min flowrate tap water test, and, ozone yields of 11, 13, 15 and 30 $mg/kWhcm^2$ respectively.

  • PDF

Analysis of Electrical Resistivity Characteristics of Concrete by Using Flat Electrode Method (평판접지 전극방법을 이용한 콘크리트의 전기비저항 특성 분석)

  • Park, Chang Seon;Park, Hae Won;Lee, Kang Hun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.57-63
    • /
    • 2017
  • PURPOSES : The pole electrode method damaged the concrete pavement on inserting the electrode into the pavement surface. This study examined the feasibility of the flat electrode method to observe the concrete pavement instead of the pole electrode method and analyzed the resistivity characteristics of the concrete by performing laboratory tests. METHODS : The resistivity of the concrete specimens manufactured with three different mixing ratios (38.50%, 39.50%, and 40.50%) were measured using the pole and flat electrode methods according to the concrete age (7 and 28 days) and electrode spacing (20 mm, 30 mm, and 40 mm). RESULTS :In both pole and flat electrode methods, the resistivity increased with increasing fine aggregate proportion regardless of the concrete age. The resistivity measured at a concrete age of 28 days was slightly larger than that measured at 7 days. In the case of a concrete age of 7 days, the resistivity measured by the flat electrode method was larger than that measured by the pole electrode method. The difference disappeared at 28 days. CONCLUSIONS :The results suggest that the flat electrode method can replace the pole electrode method because the resistivity measured by both methods was similar. Hence, the development of a technology to apply the flat electrode method to actual concrete pavement is necessary.

Effect of Electrode Space on Optical Property in Three-Electrode Type E-paper Display (3전극형 전자종이 디스플레이에서 하부전극 간격이 패널의 광특성에 미치는 영향)

  • Lee, Sang-il;Hong, Youn-Chan;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.231-236
    • /
    • 2016
  • A three-electrode type reflective display (electronic paper) is designed to apply an independent electric field to each three electrodes of the cell including two electric-type of particles and electrically neutral color fluid, so single color realization is possible. In particular, the movement of particles and optical properties are decided by the electric field between two electrodes on the lower substrate. So, the effect of electric field by the distance between two electrodes on the lower substrate is studied with electrode spacing with $10{\mu}m$, $15{\mu}m$, $20{\mu}m$, and $25{\mu}m$. By our experimentation, the driving voltage induces more reliable movement of charged particles and the optical properties as compared with the threshold voltage. We ascertain the single color realization and non-inverted particle separation is possible. So the more desirable optical properties are observed in case of the short electrode like $10{\mu}m$.

The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) (전극간 거리와 크기가 토양미생물연료전지의 성능에 미치는 영향)

  • Im, Seong-Won;Lee, Hye-Jeong;Chung, Jae-Woo;Ahn, Yong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.758-763
    • /
    • 2014
  • Soil microbial fuel cells (SMFC) have gained a great attention as an eco-friendly technology that can simultaneously generate electricity and treat organic pollutants from the contaminated soil. We evaluated the effect of electrode spacing and size on the performance of SMFC treating soil contaminated with organic pollutants. Maximum power density decreased with increase in electrode distance or decrease in electrode size, likely due to higher internal resistance. The maximum voltage and power density decreased from 326 mV and $19.5mW/m^2$ with 4 cm of electrode distance to 222 mV and $5.9mW/m^2$ with 9 cm of electrode distance. In case of electrode size test, the maximum voltage and power density generated was 291 mV, $0.34mW/m^3$ when both of anode and cathode area were $64cm^2$ with 4 cm of electrode distance. The maximum voltage decreased by 19~29% when the anode area decreased to $16cm^2$ while only 3~12% of voltage decreased with cathode area decrease. The maximum power density decreased by 49~68% with decreasing anode size, and by 29~47% with decreasing cathode size. These results showed that the anode area had more significant effects than the cathode area on the power generation of SMFC which has a high internal resistance due to a coexistence of soil and wastewater in the reactor.

A Study on Processing of Auxiliary Electrodes for OLED Lighting Devices Using a Reverse Gravure-Offset or Gravure-Offset Printing (리버스 그라비아 옵셋 또는 그라비아 옵셋 프린팅을 이용한 조명용 OLED 소자 보조전극 형성 공정 연구)

  • Bae, Sung Woo;Kwak, Sun Woo;Kim, In Young;Noh, Yong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.578-583
    • /
    • 2013
  • The lighting devices using organic light emitting diodes (OLEDs) are actively researched because of the various advantages such as high power efficiency and 2-dimensitonal lighting emitting. To commercialize those OLED lighting devices, the manufacturing cost must be downed to comparable price with conventional light sources. Here, we demonstrate a reverse gravure-offset or gravure off-set printed metal electrode for the auxiliary electrode for OLED lighting devices. For the fabricated OLED's auxiliary electrode, we used Ag nano-paste and printed metal grid structure with a line width and spacing of several ten and hundred micrometer by using gravure-offset printing. In the end the printing metal grid pattern are successfully achieved by optimization of various experimental conditions such as printing pressure, printing speed and printing delay time.

Fabrication and Characteristics of High Frequency SAW Filler (고주파 SAW Filter 의 제작과 Filter 특성)

  • 이동욱;김동수;강성건;류근걸;남효덕;이만형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.56-59
    • /
    • 1997
  • SAW filters of transversal type were fabricated on some piezoelectric substrates of the LN 128$^{\circ}$ Y-X, LN 64$^{\circ}$Y-X, Quartz ST-cut wafers through the simulation in which the number o: IDT and window function were changed for the required frequency, and the mask making. Their IDT spacing and width were 3 ${\mu}{\textrm}{m}$, chip size was 4.462 $\times$ 2.086 mm$^2$, and they had double electrode transversal type IDTs. In addition to pure Al electrode devices, Ti thin films having the different thicknesses was introduced between the Al electrode and the substrate for improving the power resistance strength. They had 11-12 dB insertion losses similar to those of pure Al electrode SAW filters in case of LN 128$^{\circ}$ Y-X, LN 64$^{\circ}$ Y-X, meaning that Ti thin film was not detrimental to the insertion loss and general frequency properties. The filters had the center frequencies 162MHz for LN 128$^{\circ}$ Y-X, 186MHz for 64$^{\circ}$ Y-X, and 131MHz for Quartz ST-cut substrates.

  • PDF

Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter (열전변환 장치의 특성 분석에 대한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

Characteristics of Discharges and Plasma Generation in Micro-Air gaps and Micro-Dielectric Barriers (마이크로 유전체장벽 및 마이크로 공격의 방전 및 플라즈마 발생특성)

  • Shon, Si-Ho;Tae, Heung-Sik;Hoon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1835-1837
    • /
    • 1996
  • Characteristics of Discharge and nonthermal plasma generation in a micro-air gap spacing between a micro-dielectric barrier and a electrode have been investigated experimentally to chert the potential to be used as a micro-scale nonthermal plasma generator. It is found that the output ozone concentration, as a nonthermal plasma intensity parameter, of the micro-air gnp nonthermal plasma generator depended greatly upon the air gap spacing and thickness of the dielectric barrier. As a result, there is a optimal air gap sparing in the same micro dielectric barrier to generate ozone effectively. And the higher ozone concentration was generated from the thinner micro-barrier.

  • PDF