• 제목/요약/키워드: Electrode performance.

검색결과 1,673건 처리시간 0.032초

불용성 전극의 Dye 제거 성능과 산화제 생성 비교 (Comparison of Dye Removal Performance and Oxidants Formation of Insoluble Electrode)

  • 유영억;김동석
    • 한국환경과학회지
    • /
    • 제20권10호
    • /
    • pp.1273-1284
    • /
    • 2011
  • The aim of this research was to evaluate the performance of insoluble electrode for the purpose of degradation of Rhodamine B (RhB) and oxidants generation [N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), $O_3$, $H_2O_2$, free Cl, $ClO_2$)]. Methods: Four kinds of electrodes were used for comparison: DSA (dimensional stable anode; Pt and JP202 electrode), Pb and boron doping diamond (BDD) electrode. The effect of applied current (0.5~2.5 A), electrolyte type (NaCl, KCl and $Na_2SO_4$) and electrolyte concentration (0.5~3.5 g/L) on the RNO degradation were evaluated. Experimental results showed that the order of RhB removal efficiency lie in: JP202 > Pb > BDD ${\fallingdotseq}$ > Pt. However, when concerned the electric power on maintaining current of 1 A during electrolysis reaction, the order of RhB removal efficiency was changed: JP202 > Pt ${\fallingdotseq}$ Pb > BDD. The total generated oxidants ($H_2O_2$, $O_3$, free Cl, $ClO_2$) concentration of 4 electrodes was Pt (6.04 mg/W) > JP202 (4.81 mg/W) > Pb (3.61 mg/W) > BDD (1.54 mg/W), respectively. JP202 electrode was the best electrode among 4 electrodes from the point of view of performance and energy consumption. Regardless of the type of electrode, RNO removal of NaCl and KCl (chlorine type electrolyte) were higher than that of the $Na_2SO_4$ (sulfuric type electrolyte) RNO removal. Except BDD electrode, RhB degradation and creation tendency of oxidants such as $H_2O_2$, $O_3$, free Cl and $ClO_2$, found that do not match. RNO degradation tendency were considered a simple way to decide the method which is simple it will be able to determinate the electrode where the organic matter decomposition performance is superior. As the added NaCl concentration was increases, the of hydrogen peroxide and ozone concentration increases, and this was thought to increase the quantity of OH radical.

전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구 (Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance)

  • 이승엽;신유환
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

Electrochemical Performance of Ti-Si Alloy Anode using Nodule Type Current Collector

  • Shin, Min-Seon;Park, Jung-Bae;Lee, Sung-Man
    • 전기화학회지
    • /
    • 제20권4호
    • /
    • pp.61-66
    • /
    • 2017
  • The cycle performance of Ti-Si alloy anode material for Li-ion batteries has been investigated as a function of loading level of electrode using a nodule type of substrate, in which the current collector of flat foil is also used for comparison. The Ti-Si alloy powders are prepared by mechanical alloying method. The electrodes with the nodule type of current collector exhibit enhanced cycling performance compared to those using the flat foil because the alloy particles are more strongly adhered to substrate and the stress caused by lithiation and delithiation reaction can be effectively relaxed by nodule-type morphology. It appears, however, that the cycle performance is critically dependent on the loading level of electrode, even when the nodule type of current collector is applied. With high loading level, cracks are initiated at surface of electrode due to a steep stress gradient through the electrode thickness during cycling, leading to capacity fading.

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes

  • Wang, Hongyan;Tang, Lihua;Shan, Xiaobiao;Xie, Tao;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.247-266
    • /
    • 2014
  • Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.

아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조 (Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance)

  • 안건형
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.505-510
    • /
    • 2019
  • Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.

생체 신호 측정을 위한 섬유전극의 형태에 따른 전기적 특성 분석 및 비교 (Analysis and comparison of textile electrode's electrical characteristics in several shapes for biopotential signals)

  • 이영재;이강휘;이정환;강다혜;조하경;조현승;이주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.371-372
    • /
    • 2008
  • Many kinds of electrodes have been developed in various forms and shapes for measurement of bio potential signal. Textile electrode has benefit of collect long tenn data monitoring because of it is non-consciousness, convenient and do not occur skin irritation. However, It is very difficult to acquire available data due to high impedance of electrode and unstable skin-electrode contact which generate motion artifact. Also snap button which usually used as mediator between textile and measurement device cause change of electrical characteristics. In this paper, we inflated textile electrode to stabilize contact and add conductive silver paste between textile and snap button to improve conductance. To compare the performance of two methods, flat or inflated and add conductive paste or not, four types of electrodes are tested on each impedance and SNR by ECG measurement. In result, the first type electrode which flat and non-conductive paste showed the worst performance and the last type electrode which is inflated shape and contain conductive paste show the best performance.

  • PDF

초음파 전기증착법을 활용한 고효율 염소 발생용 루테늄 옥사이드 전극 (Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies)

  • 트란 루 레;김춘수;윤제용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.397-407
    • /
    • 2017
  • A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.