Browse > Article
http://dx.doi.org/10.11001/jksww.2017.31.5.397

Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies  

Luu, Tran Le (Department of Mechatronics & Sensor Systems Technology, Vietnamese German University)
Kim, Choonsoo (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
Publication Information
Journal of Korean Society of Water and Wastewater / v.31, no.5, 2017 , pp. 397-407 More about this Journal
Abstract
A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.
Keywords
Chlorine evolution; DSA; Electrocatalyst; $RuO_2$; Sonoelectrodeposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. J. Terezo, E. C. Pereira (2002). Preparation and characterization of $Ti/RuO_2$ anodes obtained by sol-gel and conventional routes, Mater. Lett. 53 339-345.   DOI
2 Apha, (2005). Standard Methods for the Examination of Water and Wastewater, 21st edition, American Public Health Association, Washington, DC. pp. 4-46.
3 A. Zeradjanina, F. Mantiab, J. Masaa, W. Schuhmann (2012). Utilization of the catalyst layer of dimensionally stable anodes - Interplay of morphology and active surface area, Electrochim. Acta. 82 408-414.   DOI
4 B. Park, C. Lokhande, H. Park, K. Jung, O. Joo, (2004). Cathodic electrodeposition of $RuO_2$ thin films from RuCl3 solution, Mater. Chem. Phys. 87 59-66.   DOI
5 B. Pollet, J. Hihn, T. Mason (2008). Sonoelectrodeposition (20 and 850 kHz) of copper in aqueous and deep eutectic solvents, Electrochim. Acta. 53 4248-4256.   DOI
6 B. Pollet, E. Valzer, Oliver J. Curnick (2011). Platinum sonoelectrodeposition on glassy carbon and gas diffusion layer electrodes, Int. J. Hydrogen Energy. 36 6248-6258.   DOI
7 C. Hu, H. Guo, K. Chang and C. Huang (2009). Anodic composite deposition of $RuO.{\cdot}xH_2O-TiO_2$ for electrochemical supercapacitors, Electrochem. Commun. 11 1631-1634.   DOI
8 C. Malmgren, A. K. Eriksson, A. Cornell, J. Backtrom, S. Eriksson, H. Olin (2010). Nanocrystallinity in $RuO_2$ coatings - Influence of precursor and preparation temperature, Thin Solid Films. 518 3615-3618.   DOI
9 E. Lecina, I. Urrutia, J. Diez, J. Morgiel, P. Indyka (2012). A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al2O3 nanocomposite coatings, Surf. Coat. Tech. 206 2998-3005.   DOI
10 E. Tsuji, A. Imanishia, K. Fukuia, Y. Nakato (2011). Electrocatalytic activity of amorphous $RuO_2$ electrode for oxygen evolution in an aqueous solution, Electrochim. Acta. 56 2009-2016.   DOI
11 H. P. Klug, L. E. Alexander (1974). X-ray Diffraction Procedures, 2nd edition, Wiley, New York.
12 H. Zheng, M. An (2008). Electrodeposition of Zn-Ni-$Al_2O_3$ nanocomposite coatings under ultrasound conditions, J. Alloy. Comp. 459 548-552.   DOI
13 I. Zhitomirsky, L. Gal-Or (1997). Ruthenium oxide deposits prepared by cathodic electrosynthesis, Mater. Lett. 31 155-159.   DOI
14 J. Aromaa, O. Forse (2006). Evaluation of the electrochemical activity of a Ti-$RuO_2-TiO_2$ permanent anode, Electrochim. Acta. 51 6104-6110.   DOI
15 J. Chou, Y. Chen, M. Yang, Y. Chen, C. Lai, H. Chiu, C. Lee, Y. Chueh and J. Gan (2013). $RuO_2/MnO_2$ core-shell nanorods for supercapacitors, J. Mater. Chem. A. 1 8753-8759.   DOI
16 J. Garcia, M. Esclapez, P. Bonete, Y. Hernandez, L. Garreton, V. Saez, (2010). Current topics on sonoelectrochemistry, Ultrasonics. 50 318-322.   DOI
17 J. Garcia, V. Saeza, M. Esclapeza, P. Bonetea, Y. Vargasb, L. Gaeteb (2010). Relevant developments and new insights on sonoelectrochemistry, Physics Proc. 3 117-124.   DOI
18 J. Garcia, V. Saez, J. Iniesta, V. Montiel, A. Aldaz, (2002). Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound power, Electrochem. Commun. 4 370-373.   DOI
19 J. Jirkovsky, H. Hoffmannova, M. Klementova and P. Krtil (2006). Particle size dependence of the electrocatalytic activity of nanocrystalline $RuO_2$ electrodes, J. Electrochem. Soc. 153 111-118.
20 J. Han, S. Lee, S. Kim, S. Han, C. Hwang, C. Dussarrat, and J. Gatineau, (2010). Growth of $RuO_2$ thin films by pulsed-chemical vapor deposition using RuO4 precursor and 5% H2 reduction gas, Chem. Mater. 22 5700-5706.   DOI
21 J. Jowa, H. Lee, H. Chena, M. Wu, T. Wei (2007). Anodic cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochim. Acta. 52 2625-2633.   DOI
22 J. Jeong, C. Kim, J. Yoon (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43 895-901.   DOI
23 J. Ribeiro, M. Moats, A. Andrade (2008). Morphological and electrochemical investigation of $RuO_2-Ta_2O_5$ oxide films prepared by the Pechini-Adams method, J. Appl. Electrochem. 38 767-775.   DOI
24 J. Ribeiro and A. Andrade (2004). Microstructure, morphology and electrochemical investigation characterization of $RuO_2-Ta_2O_5$ coated Titanium electrode, J. Electrochem. Soc. 151 106-112.
25 L. Burke and J. Mulcahy (1976). The formation and reduction of anodic films on electrodeposited ruthenium, J. Electroanal. Chem. 73 207-218.   DOI
26 L. D. Burke and J. F. O'Neill (1979). Some aspects of the chlorine evolution reaction at Ruthenium dioxides anodes, J. Electroanal. Chem. 101 341-349.   DOI
27 M. Hyde, R. Compton (2002). How ultrasound influences the electrodeposition of metals, J Electroanal. Chem. 531 19-24. (Hyde et al., 2002) [25]   DOI
28 M. Metikos-Hukovic, R. Babic, F. Jovic, Z. Grubac (2006). Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution, Electrochim. Acta. 51 1157-1164.   DOI
29 M. Katerina, M. Marina; K. Petr (2009). Oxygen evolution on nanocrystalline $RuO_2$ and $Ru_{0.9}Ni_{0.1}O_2$ electrodes - DEMS approach to reaction mechanism determination. Electrochem. Commun. 11 1865-1868.   DOI
30 M. Macherzynskia, A. Kasuya (2013). Electrodeposition of uniformly distributed Ru and Ru-Pt nanoparticles onto n-type Si electrodes, Electrochim Acta. 95 288-294.   DOI
31 M. Vukovic (1989). Oxygen evolution on an electrodeposited Ruthenium electrode in acid solution - the effect of thermal treatment, Electrochim. Acta. 34 287-291.   DOI
32 S. Floate, M. Hyde, R. Compton (2002). Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound, J. Electroanal. Chem. 523 49-63.   DOI
33 R. Burrows, D. Denton and J. Harrision (1978). Chlorine and oxygen evolution on various compositions of $RuO_2/TiO_2$ electrodes, Electrochim. Acta. 23 493-500.   DOI
34 R. Chen, T. Vinh, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann and R. Hempelmann (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys. 14 7392-7399.   DOI
35 R. Chen, T. Vinh, N. Harald, J. Kintrup, A. Bulan, R. Hempelmann (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies, Electrochem. Commun. 22 16-20.   DOI
36 R. Walker (1997). Ultrasound improves electrolytic recovery of metals, Ultrason. Sonochem. 4 39-43.   DOI
37 S. Ardizzone, G. Fregonara, S. Trasatti (1990). Inner and outer active surface of $RuO_2$ electrodes, Electrochim. Acta. 35 263-267.   DOI
38 S. Trasatti (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta. 29 1503-1512.   DOI
39 S. Trasatti (1987). Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes, Electrochim. Acta. 32 369-382.   DOI
40 T. L. Luu, C. Kim, J. Kim, S. Kim, J. Yoon (2015). The Effect of Preparation Parameters in Thermal Decomposition of Ruthenium Dioxide Electrodes on Chlorine Electro-Catalytic Activity, B. Kor. Chem. Soc. 36 1411-1417.   DOI
41 T. L. Luu, J. Kim, J. Yoon (2015). Physicochemical properties of $RuO_2$ and $IrO_2$ electrodes affecting chlorine evolutions, J. Ind. Eng. Chem. 21 400-404.   DOI
42 Y. Niu, J. Wei, Y. Yang, J. Hu, Z. Yu (2012). Influence of microstructure on the wear mechanism of multilayered Ni coating deposited by ultrasound-assisted electrodeposition, Surf. Coat. Tech. 210 21-27.   DOI
43 V. Srinivasan, P. Arora, P. Ramadass (2006). Report on the electrolytic industries for the year 2004, J. the Electrochem. Soc. 153 K1-K14.   DOI
44 V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic (1999). $RuO_2-TiO_2$ coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction, Colloids Surf. A. 157 269-274.   DOI
45 V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli (2005). On the deactivation mechanisms of $RuO_2-TiO_2/Ti$ anodes prepared by the sol-gel procedure, J. Electroanal. Chem. 579 67-76.   DOI
46 V. Saez, J. Garcia, J. Iniesta, A. Ferrer, A. Aldaz (2004). Electrodeposition of $PbO_2$ on glassy carbon electrodes: influence of ultrasound frequency, Electrochem. Commun. 6 757-761.
47 V. Trieu, B. Schleya, H. Nattera, J. Kintrup, A. Bulan, R. Hempelmann (2012). $RuO_2$-based anodes with tailored surface morphology for improved chlorine electro-activity, Electrochim Acta. 78 188-194.   DOI
48 Y. Zheng, H. Ding, M. Zhang (2008). Hydrous-ruthenium-oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films. 516 7381-7385.   DOI
49 A. Mallik, B. Ray (2011). An analysis of the temperature-induced supersaturation effects on structure and properties of sono-electrodeposited copper thin films, Surf. Coat. Tech. 206 1947-1954.   DOI
50 A. Bard, L. Faulkner (2001). Electrochemical methods - Fundamentals and applications, 2nd edition, Wiley, New York pp. 200-217.