• Title/Summary/Keyword: Electrode life

Search Result 294, Processing Time 0.024 seconds

Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery (리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭)

  • Hyeon Taek Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1191-1200
    • /
    • 2023
  • The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 이온교환막의 수명 예측)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

THE DEVELOPMENT OF INDWELLING WIRELESS PH TELEMETRY OF INTRAORAL ACIDITY (구강 내 산도의 생체 내 측정을 위한 wireless pH telemetry의 개발)

  • Kim, Hyung-Jun;Kim, Jae-Moon;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The purpose of this study was to develop the wireless pH telemetry lasting longer than 24 hours in the mouth to overcome the limits of conventional wire telemetry previously used for salivary and plaque pH measurement, and to assess its effectiveness. We developed a wireless pH telemeter which can measure and store the pH profile data during more than 24 hours. It was composed of intraoral part; pH sensor of antimony electrode, battery and microprocessor for data storage, and extraoral part; control/data receiver and data analyzing software which was newly made for this device. After inspecting wireless electrode for accurate measurement, it was attached to the removable intraoral appliance and delivered to the volunteer who was told to wear except brushing time, retrieved after 24 hours and finally the pH profile data was extracted and analyzed. When compared with conventional wire telemetry, this device showed similar results and induced less discomfort to examinees. The data showed pH changes at same time when examinees ate various scheduled foods and beverages. With this method it became possible to accurately measure pH changes within mouth for long time in accordance with individual's lifestyle, definitely reducing the discomfort inflicted to the examinees' life.

  • PDF

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

Electrochemical Synthesis of Conducting Polypyrrole in Nucleophilic Solvent (친핵성 용매하에서 전도성 Polypyrrole의 전기화학적 합성)

  • Lee, Hong-Ki;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.616-623
    • /
    • 1994
  • Conductive Polypyrrole films have been synthesized by electrochemical method in nucleophilic solvent such as N, N-dimetylformamide(DMF), dimethylsulfoxide(DMSO). The effect of protic acid as supporting electrolyte to decrease the nucleophilicity of the solvent was studied. Cyclic voltammetry, I-t transients were carried out to investigate the electrodeposition of conductive polypyrrole film on platinum electrode. Three peaks of 0.65V, 0.85V, and 1.2V vs. $Ag/AgNO_3$ indicated oxidation of monomer, oxidation of pyrrole to the platinum electrode and decomposition of polypyrrole film, respectively. With the I-t transients, nucleation process was confirmed and from obtained linear fits of I vs.t2resembles the metal film formation, and 2.15-2.26 of n-value could be calculated. As concentration of pyrrole or prolic acid was increased, the conductivity of polypyrrole film increased linearly. Tensile strength and elongation were investigated for comparing the mechanical properties and also SEM was performed for morphology investigation.

  • PDF

Effects of Heat-treatments on Discharge Characteristics of TiFe1-xNix Alloy Electrodes for Ni/MH Secondary Battery (Ni/MH 2차전지용 TiFe1-xNix 합금전극의 방전특성에 대한 열처리의 영향)

  • Joung, Soon-dol;Joung, Sang-sik;Ahn, Hyo-jun;Kim, Ki-won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.135-141
    • /
    • 1998
  • The effects of heat-treatment on discharge characteristics of $TiFe_{1-x}Ni_x$ alloy were investigated. The content of Ni in alloy was varied from x = 0.1 to 0.6 by each 0.1 increment. Discharge capacity change of each alloy with C/D cycles was measured. With increasing Ni-content initial discharge capacity was increased. but at x = 0.6 it was deceased again. With increasing C/D cycles discharge capacity was rapidly decreased in the alloy of high Ni-content. In order to investigate the effects of heat-treatment on cycle life, $TiFe_{0.5}Ni_{0.5}$ alloy having maximum initial discharge capacity was heat-treated at various temperatures in the range of $700{\sim}900^{\circ}C$ and tested. The loss of initial discharge capacity was appeared at all temperatures. but cycle characteristics of the alloy was improved. The electrodes heat-treated for 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered as 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered asbeing due to increased electrode strength and small loss of porosity during heat-treatment. The electrode heat-treated for 1 hour at $900^{\circ}C$ showed poor discharge characteristics because of low porosity.

  • PDF

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Preparation of the Proteus vulgaris Bacterial Electrodes for the Determination of Urea and Their Application (요소 정량을 위한 Proteus vulgaris 박테리아 전극의 개발과 그 응용)

  • Gwon-Shik Ihn;Bong-Weon Kim;Sohn Moo-Jeong;Ihn-Tak Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.323-332
    • /
    • 1988
  • The bacteria containing urease convert each molecule of urea into two molecules of ammonia and one molecule of carbon dioxide gas. Bacterial electrodes have been constructed by immobilizing the Proteus vulgaris on an ammonia and a carbon dioxide gas-sensors, and were investigated for the effects of pH, temperature, buffer solution, bacterial amounts and interferences, and life time. NH3-bacterial electrode based on ammonia gas-sensor had linearity in the range of $7.0{\times}10^{-4}\;-\;3.0{\times}10^{-2}$M urea in pH 7.4, 0.05M phosphate buffer at $25^{\circ}C$ with a slope of 116.7 mV/decade. While $CO_{2-}$bacterial electrode based on carbon dioxide gas-sensor bad linearity in the range of $7.0{\times}10^{-4}\;-\;5. 0{\times}10^{-2}$M urea in pH 7.0, 0.1M phosphate buffer at $30^{\circ}C$with a slope of $45.4{\times}45.7mV/decade$. As the clinical application, urea in urine was determined by these devices and this result was compared with spectrophotometric method. Consequently, these electrodes could be used for the analysis of many samples because of simplicity, rapidity and convenience of the experimental procedure.

  • PDF