• Title/Summary/Keyword: Electrode life

Search Result 294, Processing Time 0.025 seconds

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries (리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구)

  • RYU, HO SUK;KIM, IN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack (헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석)

  • Lee, Hyeon-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.

Characteristics of AC Treeing for Three Epoxy Resins for High Voltage Heavy Electric Machine Appliances (고전압 중전기기용 에폭시 수지 3종에 대한 교류트리잉 파괴특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1322-1329
    • /
    • 2018
  • In this paper, the reliability test of three kinds of epoxy resin for GIS Spacer, which is a high voltage based heavy electric machine, AC electrical treeing experiments were performed. Three types of epoxy resins, Araldite B41, CT 5531 CI and B46, have slight viscosity differences. An non-uniform electric field, E = 1149.4 kV/mm, as the needle to plate electrode, a power source with a frequency of 1 kHz was applied to the tree electrode for accelerated deterioration. The treeing phenomena of the three kinds of epoxy resin all initiated, propagated, and destroyed by the branch tree. Epoxy Resin B46 was 145 times longer than B41 and 53 times longer than CT 5531CI. I think that the choice of epoxy resin is very important in choosing high voltage heavy electric machine insulation materials.

A Study on the Cycle Life Improvement of V-Ti-Ni(V-rich) Alloy as a Negative Electrode for Ni/MH Rechargeable Battery (Ni/MH 2차전지의 음극으로써 V-Ti-Ni(V-rich) 수소저장합금의 전극수명 향상에 관한 연구)

  • Kim, Ju-Wan;Lee, Seong-Man;Lee, Jae-Yeong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • The discharge capacity of V-Ti-Ni(V-rich) metal hydride electrode during the charge-discharge cycling was investigated in KOH electrolyte. All electrodes were degraded within 25 cycles. To investigate the cause of the degradation phenomena impedance measurements were performed by using E.I.S(electrochemical impedance spectroscopy). The surfaces of the degraded electrodes were examined by Auger electron spectroscopy (AES). It was observed that all electrodes were covered with oxygen from the surface to the bulk, titanium was enriched near surface, and vanadium was dissolved from the surface to the bulk.

  • PDF

A Study on New Inverse Pinch Switch for High Power Transfer (High Power 전달을 위한 새로운 Inverse Pinch Switch에 관한 연구)

  • Cho, Kook-Hee;Kim, Young-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.120-125
    • /
    • 2006
  • In contrast to the conventional trigatron switch in which the currents are constricted by the z-pinch mechanical the new switch operates in an inverse pinch geometry formed by a pair of spiral electrodes in a sealed-off type. Inverse pinch switch greatly reduces hot spot formations and protects the electrode surfaces. The switch can be initiated with an electrical trigger electrode. Advantages of the new switch over the conventional switches are longer useful life, high current capability and lower inductance due to the dispersed and moving current sheet. These improved characteristics may make the inverse pinch switch suitable for pulse power systems.

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries (리튬 이온 배터리용 양극 및 음극 재료의 최근 동향)

  • Nguyen, Van Hiep;Kim, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.635-644
    • /
    • 2018
  • Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.

The Electrical Breakdown Characterization of Gas Discharge Tube using Brass Electrode for Surge Protector (과전압 보호용 황동전극 기체방전관의 절연파괴 특성)

  • Kim, Min Il;Jeong, Euigyung;Lee, Sei-Hyun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.205-210
    • /
    • 2010
  • In this study, a brass electrode gas discharge tube (GDT) was prepared to investigate its discharge characterization, which affects surge protection efficiency and lifetime of GDT. Discharge characterization of GDT using a brass electrode was investigated by changing applied voltage gradient and nitrogen gas pressure inside the GDT. As applied voltage gradient in GDT increased, electrical breakdown voltage and threshold energy largely increased and electrical breakdown time delay decreased. It was found that electrical breakdown voltage, electrical breakdown time delay, and threshold energy were largely decreased with decreasing the nitrogen gas pressure in GDT. As a result, electrical breakdown voltage, electrical breakdown time delay, threshold energy needed to be decreased to increase surge protection efficiency and lifetime. It was also found that the nitrogen gas pressure of GDT influenced strongly the performances as well as life span of it.

Development of Tight-Fitting Garments with a Portable ECG Monitor to Measure Vital Signs (휴대용 심전도 기기와 직물형 전극을 이용한 생체정보 측정용 밀착 의복 개발)

  • Jeong, Yeon-Hee; Kim, Seung-Hwan;Yang, Young-Mo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.112-125
    • /
    • 2010
  • A Holter monitor is used for ECG monitoring of ambulatory daily life in hospital. However, the use of this apparatus causes skin allergies and discomfort in patients because of the attachment gel and tapes used to attach disposable electrodes to the skin. In this study, the development of tight-fitting clothing connected to a portable Holter monitor was proposed. In addition, the use of conductive fabrics as electrodes was proposed; this will enable the use of garments in u-health care for measuring ECG signals. The male subjects were university students in the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using seven Likert scales. A Likert type scale was used for the evaluation and a 7 point score indicates that it provided the best fit as a tight-fitting upper clothing. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 4 locations (the conductive fabric electrode) As results, a male basic sloper for upper clothing was developed and that pattern was manipulated to the tight fit pattern by considering the reduction rate of the percentage stretch in the fabric. The developed tight-fitting garment was superior in terms of subjective sensation and 6t. The mean pressure of the garment with reduction rates of 40% in width and of 50% in length was 8.45gf/$cm^2$. A conductive fabric electrode was developed by considering the sewing method and the developed electrode was detected well. The ECG data were recorded for 13 hr 19 min 44 sec and the artifacts in the ECG signals were recorded for 9 hr 3 min 46 sec (total time: 22 hr 23 min 23 sec). The artifacts data were obtained during heavy activities.

Characteristics and Preparation of Potassium Ion Selective Liquid Membrane Electrode Based on Polyurethane Matrix (폴리우레탄을 메트릭스로한 액막형 칼륨이온 선택성 전극의 제조 및 특성)

  • Kwang Sik Yoo;Yong Tack Lee;Chul Yong Kang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 1991
  • Previous matrices of potassium ion selective electrodes are generally based on PVC. In this study, however, the electrode membrane was prepared with polyurethane matrix containing potassium tetraphenyl borate as sensing materials and D-18-Crown-6 and 2-nitrophenyl-n-alkylethers as solvent mediator. The average life time of the K$^+$-selective electrode based on polyurethane was 75 days which is significantly longer than PVC based one. The slope factor in linear dynamic range ($1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}$ M) was 52 mV/decade. The electrode has been successfully applied to find end point in potentiometric titration of K$^+$ with tetraphenyl borate solution in the sea water, even in the presence of several interfering cations$(NH^{4+},\;Na^{+},\;Li^{+},\;Ca^{2+},\;Mg^{2+},\;Cu^{2+}$).

  • PDF