• 제목/요약/키워드: Electrode interface

검색결과 493건 처리시간 0.027초

귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법 (The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces)

  • 천장호;전상규;이재항
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.119-129
    • /
    • 2003
  • The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.

탄소나노튜브 전극의 전기화학적 특성 (Electrochemical Properties of Carbon Nano-Tube Electrode)

  • 이동윤;구보근;이원재;송재성;김현주
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권4호
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.

리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향 (Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode)

  • 김예랑;박지혜;황유진;정철수
    • 전기화학회지
    • /
    • 제25권2호
    • /
    • pp.51-68
    • /
    • 2022
  • 리튬금속전지는 높은 에너지 밀도를 구현시킬 수 있음에도 불구하고, 단락, 낮은 쿨롱 효율, 용량 손실, 사이클 성능 감소 등의 문제를 초래하는 덴드라이트 성장을 억제시키는 기술은 아직 학술연구 단계에 머물러 있다. 본 논문에서는 최근까지 발표된 리튬금속전극에서 덴드라이트 성장을 억제시킬 수 있는 방법을 4가지로 분류하여 분석해보았다. 즉, 리튬금속전극의 부피 팽창에 대응할 수 있는 유연한 SEI (solid electrolyte interface) 층, 덴드라이트 성장을 물리적으로 억제시킬 수 있는 SEI 지지층, 균일한 리튬 확산을 유도하여 리튬 성장을 조절하는 SHES (self-healing electrostatic shield) 메커니즘, 그리고 리튬의 균일한 전착을 유도하는 마이크로패터닝 등에 대해 연구된 사례들의 장단점을 분석하여, 리튬금속전극의 실용화 연구에 도움을 주고자 한다.

금속/세라믹 계면 물성 분석 (Metal/ceramic Interface Mechanical Property Analysis)

  • 김송희;강형석
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.9-15
    • /
    • 2004
  • The flexural strength from 3-point bend test and fatigue properties were measured to evaluate mechanical properties of metal/ceramic interface of the multilayer ceramic package produced through tape casting. From the results, the specimens with three electrode layers showed the highest strength. The temperature distribution with time during thermal cycle and thermal stresses with the change of electrode's shape have been estimated by mathematical modelling. Specimen affected by thermal shock, produced microcracks by the difference of thermal expansion coefficient. The results of tensile test and fatigue test showed the rupture at pin. The fact that the pin brazed specimens were always fractured at the pin proved the good bonding condition between pin and electrode.

  • PDF

Clark전극에 의한 DO 농도측정을 위한 절전형 센서개발에 관한 연구 (Development of low power type sensor for the DO concentration measurement by clark electrode)

  • 이동희
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.254-260
    • /
    • 1995
  • A method is described for the design and fabrication of the sensor interface circuits on the Clark electrodes for the dissolved oxygen(DO). The discussion includes a method for the +5 V single-supply driving for the sensor circuits, which has low power comsumption for the front-end electronics. DO probe under test is composed of the Clark electrode with silver anode, gold cathode and the electrolyte of half saturated KCI solution and the FEP teflon memtrance for the oxygen penetration. Typical polarograms for the DO probes by using this sensor circuit reveals high accuracy over 99% of the I to V conversion. Partial pressure of oxygen obtained from the polarograms are well suited to the results calculated. It is expected that the proposed sensor circuits can be utilized into the customized IC for the battery-driven small-size DO meters.

  • PDF

Sol-Gel 법으로 제작된 PZT 박막의 전기적 성질에 조성과 하부전극이 미치는 영향 (The effects of the composition and the lower electrode on the properties of PZT thin films prepared by Sol-Gel method)

  • 이정기;윤영섭
    • 전자공학회논문지A
    • /
    • 제32A권7호
    • /
    • pp.77-84
    • /
    • 1995
  • We studied the effects of the Zr/Ti ration and the bottom electrode (Pt or ITO) on the electrical properties of PZT thin films prepared by sol-gel method. Their permittivities and tagent losses with the variation of frequencies were measured by the LCR meter and their maximum polarizations, remanent polarizations, and coercive fields were obtained from the hysteresis loops measured by the Sawyer-Tower circuit. For the PZT thin film of the Zr/Ti ration of 53/47, permittivity at 10kHz, coercive field, maximum and remanent polarizations ere measured as 952, 20.7kV/cm, 10.43${\mu}C/cm^{2}$ and 4.3${\mu}C/cm^{2}$, respectively. For the film of the Zr/Ti ration of 25/75, coercive field, maximum and remanent polarizations were measured as 33.12kV/cm, 5.59${\mu}C/cm^{2}$ and 1.5${\mu}C/cm^{2}$, respectively. For the film of the Zr/Ti ratio of 75/25, they were measured as 23.8kV/cm, 7.45${\mu}C/cm^{2}$, and 3.5${\mu}C/cm^{2}$, repectively. Our investigation into the effects of the lower electrode on the electrical properties of PZT films showed the following results. The permittivities of the PZT films deposited on the ITO electrode decreased more quickly than those of the PZT films on the Pt electrode. The tangent losses of the former films increased more quickly than those of the latter. These may be due to the degradation of the quality of the interface between the electrode and the film, which results from the diffusion of Pb. It is also noticeable that permittivities and tangent losses of the PZT films deposited on the ITO electrode varied differently with the Zr/Ti ratio. This may indicate that the quality of the interface between the electrode and the film changes with the Zr/Ti ration of the PZT film.

  • PDF

Fabrication of interface-controlled Josephson junctions using Sr$_2$AlTaO$_6$ insulating layers

  • Kim, Jun-Ho;Choi, Chi-Hong;Sung, Gun-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.165-168
    • /
    • 2000
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. A low-dielectric Sr$_2$AlTaO$_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2$Cu$_3$O$_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the edge of the YBCO base electrode using high energy ion-beam treatment prior to deposition of the YBCO counter electrode. We investigated the effects of high energy ion-beam treatment, annealing, and counter electrode deposition temperature on the characteristics of the interface-controlled Josephson junctions. The junction parameters such as T$_c$, I$_c$c, R$_n$ were measured and discussed in relation to the barrier layer depending on the process parameters.

  • PDF

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

구리/NaCl 전해질/아연 전기화학전지의 전류특성 (Current characteristics of Cu/NaCl electrolyte/Zn electrochemical cell)

  • 김용혁
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1626-1631
    • /
    • 2010
  • The characteristics of electric current for the voltaic cell are important for electric power applications. In this paper, an electrical equivalent model consist of three resisters and a capacitance for the Cu/NaCl solution/Zn electrochemical cell is proposed. The capacitance which exists in the Zn electrode/electrolytic interface increased according to Zn electrode area, but cannot affect almost in electric current. Complex impedance plot was used to analysis the interface effect for Zn/electrolyte. This result shows that the interface is similar with the electric transmission line. The short current measurements were conducted to investigate the effects of hydrogen peroxide, the watery sulfuric acid and NaCl aqueous solution. As the hydrogen peroxide increased, the electric current increased because the hydrogen gas being converted with the water. Also electric current increased significantly with increase of the hydrogen ion with the watery sulfuric acid and increased with increase of $Na^+$ ion and $Cl^-$ion in the NaCl electrolyte.