• Title/Summary/Keyword: Electrode fabrication

Search Result 862, Processing Time 0.032 seconds

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers (몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작)

  • Lee, Gyeong-Yeol;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.594-602
    • /
    • 2022
  • Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Characteristics and Fabrication of Complementary Electrochromic Device ( I ) (상보형 일렉트로크로믹 소자의 제조 및 특성 ( I ))

  • Lee, S.Y.;Seo, D.K.;Kim, Y.H.;Cho, T.Y.;Chun, H.G.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 1997
  • In this study, two different types of complementary electrochromic devices using amorphous $WO_{3}$ films as a working electrode, $V_{2}O_{5}$ film and NiO film as counter electrodes respectively were investigated. For the devices using amorphous and crystalline $V_{2}O_{5}$ films of $100{\sim}150nm$ thickness with $ITO/WO_{3}/LiClO_{4}-PC/V_{2}O_{5}/ITO$ structure, an optical modulation of $50{\sim}60%$ were obtained at a potential range of $1{\sim}2V$. It has been shown that transmittance and reflectance of light could be electrically controlled by low applied voltage. For the devices with $ITO/WO_{3}/LiClO_{4}-PC/NiO/ITO$ structure in which NiO film was deposited by a RF reactive sputtering, the optical modulation in visible light region (${\lambda}=550nm$) and in near infrared light region (${\lambda}=850nm$) were 25% and 30%, respectively.

  • PDF

Fabrication of GHz-Band FBAR with AIN Film on Mo/SiO2/Si(100) Using MOCVD (Mo/SiO2/Si(100)기판 위에 MOCVD법으로 성장시킨 AIN박막이용 GHz대역의 FBAR제작에 관한 연구)

  • Yang, Chung-Mo;Kim, Seong-Kweon;Cha, Jae-Sang;Park, Ku-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2006
  • In this paper, it is reported that film-bulk-acoustic resonator with high c-axis oriented AIN film on $Mo/SiO_2/Si(100)$ using metal-organic-chemical-vapor deposition was fabricated. The resonant frequency and anti-resonant frequency of the fabricated resonator were observed with 3.189[GHz] and 3.224[GHz], respectively. The quality factor and the effective electromechanical coupling coefficient(${k_{eff}}^2$) were measured with 24.7 and 2.65[%], respectively. The conditions of AIN deposition were substrate temperature of $950[^{\circ}C]$, pressure of 20Torr, and V-III ratio of 25000. A high c-axis oriented AIN film with $4{\times}10^{-5}[\Omega{cm}]$ resistivity of Mo bottom electrode and $4[^{\circ}]$ of AIN(0002) full-width at half-maximum(FWHM) on $Mo/SiO_2/Si(100)$ was grown successfully. The FWHM value of deposited AIN film is useful for the RF band pass filter specification for GHz-band wireless local area network.

A Study About Electrical Properties and Fabrication Schottky Barrirer Diode Prepared on Polar/Non-Polar of 6H-SiC (극성/무극성 6H-SiC 쇼트키 베리어 다이오드 제조 및 전기적 특성 연구)

  • Kim, Kyung-Min;Park, Sung-Hyun;Lee, Won-Jae;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.587-592
    • /
    • 2010
  • We have fabricated schottky barrier diode (SBDs) using polar (c-plane) and non polar (a-, m-plane) n-type 6H-SiC wafers. Ni/SiC ohmic contact was accomplished on the backside of the SiC wafers by thermal evaporation and annealed for 20minutes at $950^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The specific contact resistance was $3.6{\times}10^{-4}{\Omega}cm^2$ after annealing at $950^{\circ}C$. The XRD results of the alloyed contact layer show that formation of $NiSi_2$ layer might be responsible for the ohmic contact. The active rectifying electrode was formed by the same thermal evaporation of Ni thin film on topside of the SiC wafers and annealed for 5 minutes at $500^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The electrical properties of SBDs have been characterized by means of I-V and C-V curves. The forward voltage drop is about 0.95 V, 0.8 V and 0.8 V for c-, a- and m-plane SiC SBDs respectively. The ideality factor (${\eta}$) of all SBDs have been calculated from log(I)-V plot. The values of ideality factor were 1.46, 1.46 and 1.61 for c-, a- and m-plane SiC SBDs, respectively. The schottky barrier height (SBH) of all SBDs have been calculated from C-V curve. The values of SBH were 1.37 eV, 1.09 eV and 1.02 eV for c-, a- and m-plane SiC SBDs, respectively.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

Fabrication of Hydrogel and Gas Permeable Membranes for FET Type Dissolved $CO_{2}$ Sensor by Photolithographic Method (사진식각법을 이용한 FET형 용존 $CO_{2}$ 센서의 수화젤막 및 가스 투과막 제작)

  • Park, Lee-Soon;Kim, Sang-Tae;Koh, Kwang-Nak
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.207-213
    • /
    • 1997
  • A field effect transistor(FET) type dissolved carbon dioxide($pCO_{2}$) sensor with a double layer structure of hydrogel membrane and $CO_{2}$ gas permeable membrane was fabricated by utilizing a $H^{+}$ ion selective field effect transistor(pH-ISFET) with Ag/AgCl reference electrode as a base chip. Formation of hydrogel membrane with photo-crosslinkable PVA-SbQ or PVP-PVAc/photosensitizer system was not suitable with the photolithographic process. Furthermore, hydrogel membrane on pH-ISFET base chip could be fabricated by photolithographic method with the aid of N,N,N',N'-tetramethyl othylenediarnine(TED) as $O_{2}$ quencher without using polyester film as a $O_{2}$ blanket during UV irradiation process. Photosensitive urethane acrylate type oligomer was used as gas permeable membrane on top of hydrogel layer. The FET type $pCO_{2}$ sensor fabricated by photolithographic method showed good linearity (linear calibration curve) in the range of $10^{-3}{\sim}10^{0}\;mol/{\ell}$ of dissolved $CO_{2}$ in aqueous solution with high sensitivity.

  • PDF

Characteristics and Fabrication of Thermal Oxidized-SnO2 (SnO2 열산화감지막의 제작 및 특성)

  • Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.342-349
    • /
    • 2002
  • New formation technique of metal oxide sensing film was proposed m this paper. Silicon wafer with Pt electrodes was used as a substrate for depositing metal Sn film. Metal Sn was deposited in the state of not continuous film but only island state. The samples were prepared to obtain the optimal condition of metal Sn deposition. The resistances of deposited Sn onto Pt electrodes amounted to $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$ and $50\;k{\Omega}$, respectively. Also The sample with $1,500\;{\AA}$ thickness of Sn was prepared m order to compare sensing properties between conventional type and proposing type. After deposition of metal Sn, $SnO_2$ was formed by thermal oxidation method for 3 hrs. in $O_2$ ambient at $700^{\circ}C$. Surface morphology, crystal structure and surface roughness of oxidized-sensing film were examined by SEM, XRD, and AFM, respectively. From the results of these analyses, the optimal deposition condition of Sn was that the Pt electrode resistance became $10\;k{\Omega}(300\;{\AA})$. Also, the sensing characteristics of fabricated sensing film for various concentrations of butane, propane and carbon monoxide gases were measured at he operating temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$, respectively. Although catalyst as not added to the sensing film, it has exhibited the high sensitivity to all the test gases.