• Title/Summary/Keyword: Electrode area

Search Result 970, Processing Time 0.026 seconds

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 박막의 화학적 내구성 평가)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.362-367
    • /
    • 2023
  • Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

Development of Extracting Solution for Soil Chemical Analysis Suitable to Integrated Ion-selective Micro-electrodes (집적형 이온선택성 미세전극 센서에 적합한 토양화학 분석용 침출액 종 개발)

  • Shin, Kook-Sik;Lim, Woo-Jin;Lee, Sang Eun;Lee, Jae Seon;Cha, Geun Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.513-521
    • /
    • 2009
  • The primary goal of this research was to develop an optimized analytical procedure for soil analysis based on ion-selective microelectrodes for agricultural purposes, which can perform on-site measurement of various ions in soil easily and rapidly. For the simple and rapid on-site diagnosis, an analysis of soil chemicals was performed employing a multicomponent-in-situ-extractant and an evaluation of ionselective microelectrodes were conducted through the regressive correlation method with a standard analytical approach widely employed in this area. Examination of sensor responses between various soil nutrient extractants revealed that 0.01M HCl and 1M LiCl provided the most ideal Nernstian response. However, 1M LiCl deteriorated the selective response for analytes due to high concentration (1M) of lithium cation. Thus, employing either 0.1M HCl as an extractant followed by 10 times dilution, or 0.01M HCl as an extractant without further dilution was chosen as the optimal extractant composition. A study of regressive correlation between results from ion-selective microelectrodes and those from the standard analytical procedure showed that analyses of $K^+$, $Na^+$, $Ca^{2+}$, and $NO_3{^-}$ showed the excellent consistency between two methods. However, the response for $NH_4{^+}$ suffered the severe interference from $K^+$. In addition, the selectivity for $Mg^{2+}$ over $Ca^{2+}$ was not sufficient enough since available ionophores developed so far do not provide such a high selectivity for $Mg^{2+}$. Therefore, as an agricultural on-site diagnostic instrument, the device in development requires further research on $NH_4{^+}$ analysis in the soil sample, development of $Mg^{2+}$-selective ionophore, and more detailed study focused on potassium, one of the most important plant nutrients.

Effect of Submergence and Air Exposure of the Shoot on Growth, Nutrient Uptake and Photosynthesis in Monochoria vaginalis Presl. (물달개비 경엽(莖葉)의 침수여부(沈水與否)에 따른 생장(生長), 양분흡수(養分吸收) 및 광합성(光合成) 비교(比較))

  • Soh, C.H.;Yang, K.S.;Kwon, Y.W.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 1996
  • Growth, nutrient uptake and photosynthesis as affected by submersion of shoot in pickerel weed (Monochoria vaginalis Presl.) were determined. The shoots of pickerel weeds in hydroponic culture were subjected to the submerged or emerged condition at 3- or 5-leaf stage for 8 or 10 days. Under submerged condition, growth in plant height was enhanced, but leaf number, leaf area, fresh and dry weight were reduced compared to those under the emerged condition. Similar responses in growth to submergence were obtained with the pickerel weeds rooted in the soil. Under submergence, chlorophyll content increased during the first 2 days, but thereafter remarkably decreased at 3-leaf stage and after the first 4 days at 5-leaf stage. Compared to the emerged condition, uptakes of $NH_4\;^+$-N, $NO_3\;^-$-N, $P_2O_5$ and $K^+$ were reduced, but uptakes of $Ca^{++}$ and $Mg^{++}$ increased under the submerged condition. Photosynthetic rate of shoot under water, measured by $CO_2$electrode, showed the maximum by 210 ${\mu}$moles $HCO_3\;^-$/g F.W. at the 8th day after submergence(DAS) at 3-leaf stage and 320 ${\mu}$moles $HCO_3\;^-$/g F. W. at 6 DAS at 5-leaf stage. These results indicate that pickerel weeds grow much better when the shoot is air-exposed and are less tolerable to submergence at 3 leaf-stage than at 5-leaf stage.

  • PDF

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell II. Characterization of La0.6Sr0.4Co1-xFexO3 by using XRD, TG, and TPR (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 II. XRD, TG, TPR를 이용한 La0.6Sr0.4Co1-xFexO3의 특성 분석)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.554-564
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35, and 0.50) as an oxygen electrode catalyst. The changes in the catalytic properties as a function of Fe content were investigated by XRD, TG, and TPR. XRD patterns gave different lattice parameters of the catalysts. TG study revealed that Fe was so stabilized in the perovskite structure as to be hardly reduced even up to $900^{\circ}C$, and the amount of oxygen which was eliminated at high temperature increased with the fraction of Fe because Fe induced the increase of Co-O binding energy. From TPR study, ${\alpha}$-(low temperature peak) and ${\beta}$-(high temperature peak)states were observed. The bond strength of the ${\beta}$-species which was associated strongly with Co of the perovskite increased proportionally with the fraction of Fe. The ${\alpha}$-species, reversible oxygen, was the active species in the oxygen reduction. The ${\alpha}$-peak temperature which reflected the binding energy between Co and ${\alpha}$-state oxygen moved to lower temperature with the increase of lattice parameter of the catalytst due to the increase of Fe content. The decrease in the binding energy increased the activity in the oxygen reduction, but the decrease of ${\alpha}$-species with the increase of Fe content decreased the activity. The increase in the surface area with Fe content had little effect on the activity.

  • PDF

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.

Simultaneous determinations of anthracycline antibiotics by high performance liquid chromatography coupled with radial-flow electrochemical cell (고성능 액체 크로마토그래피/방사흐름 전기화학전지를 이용한 안트라사이클린계 항생제의 동시 정량)

  • Cho, Yonghee;Hahn, Younghee
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.308-314
    • /
    • 2007
  • The analytical method of HPLC with the radial-flow electrochemical cell (RFEC) has been developed to determine doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin simultaneously by employing a reversed-phase chromatography. Anthracyclines were detected at -0.74 V vs. a Ag/AgCl (0.01 M NaCl) reference electrode, a potential of diffusion current plateau in the mobile phase. At a $V_f$ of 1.0 mL/min doxorubicin, epirubicin, daunorubicin and idarubicin appeared at a retention time ($t_r$) of 6.4 min, 7.4 min, 12.7 min and 18.4 min, respectively, while at a $V_f$ of 0.6 mL/min, doxorubicin, epirubicin, nogalamycin, daunorubicin and idarubicin appeared at a $t_r$ of 9.9 min, 11.5 min, 13.5 min, 19.6 min and 28.7 min, respectively. The linearity between each anthracycline injected ($2.40{\times}10^{-7}M{\sim}1.42{\times}10^{-5}M$) and peak area (charge) was excellent with the square of the correlation coefficient ($R^2$) higher than 0.999. The detection limits were $1.0{\times}10^{-8}M{\sim}1.5{\times}10^{-7}M$ for the five anthracyclines. Within-day precision for the five anthracyclines were in reasonable relative standard deviations less than 3 % ($1.00{\times}10^{-6}M{\sim}1.42{\times}10^{-5}M$) except the lower concentrations less than $0.7{\mu}M$. Solid phase extractions of $1.00{\times}10^{-5}M$ epirubicin, $0.48{\times}10^{-5}M$ nogalamycin and $1.52{\times}10^{-5}M$ daunorubicin from human serum with a $C_{18}$ cartridge resulted in 97 %, 100 % and 90 % of recoveries, respectively.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.