• 제목/요약/키워드: Electrode Tip

검색결과 171건 처리시간 0.022초

고기압 $SF_{6}$가스에서 전극표면 상태가 절열파괴 강도에 미치는 영향 (Influence of electrode surface conditions on breakdown field strength in pressurized $SF_{6}$)

  • 이동인
    • 전기의세계
    • /
    • 제30권3호
    • /
    • pp.172-176
    • /
    • 1981
  • The reduction in the breakdown field strength due to electrode surface roughness was calculated by applying the streamer breakdown criterion and the surface roughness factor, and measurements of static breakdown voltage for a gap with an artificial protrusion were made under the uniform field at pressures up to 4 bar in pressurized $SF_{6}$. The effect of polarity of highly stressed electrode on the breakdown field strength was also investigated. The measurements have shown that the measured breakdown levels for a protrusion located on the cathode agree with those calculated and the values measured with an identical anode protrusion are substantially higher and more scattered. This may be explained if it assumed that a high rate of production of initiatory electrons is maintained at the tip of a cathode protrusion by field emission. In practical point of view, the breakdown levels in pressurized $SF_{6}$ can be bereliably estimated from the values calculated.

  • PDF

전기수력학적 미립화에서 액적 형성에 영향을 미치는 인자에 관한 실험적 연구 (A Study on Influence Factors on Drop Formation in Electrohydrodynamic Atomization)

  • 성기안;이창식
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.24-30
    • /
    • 2003
  • An experimental study was performed to investigate the influence factors of drop formation in electrohydrodynamic atomization. The mode of electrohydrodynamic atomization depended on the various factors such as the flow rate of the liquid, the inner diameter of the nozzle, the distance between the nozzle tip and the ground electrode, the shape of the ground electrode. and the applied high voltage. This work was performed to investigate the experimental analysis for the flow pattern visualization of droplets, and the relationship between voltage application and the behavior of liquid atomization. Uniform drops of different sizes can be obtained at the inception of the spindle mode by charging the flow rate and the electric field. The drop size also decreased when the flow rate was raised for the spindle mode. The whipping motion occurred beyond 7kV and before the corona started to take effect.

  • PDF

삼각 팁을 이용한 저전압 구동형 정전방식 마이크로액추에이터 (Electrostatic Microactuators operated at low drive voltages Using Triangular Tip)

  • 김봉환;성우경;전국진
    • 대한전자공학회논문지SD
    • /
    • 제38권9호
    • /
    • pp.605-610
    • /
    • 2001
  • 본 연구에서는 저전압 구동형 정전방식을 이용하여 마이크론 이하 간격(sub-micron gap)을 갖는 마이크로액추에이터를 제작하였다. 사각 팁과 삼각 팁의 두 가지 방식으로 마이크로액추에이터를 제작하여 비교하였다. 삼각 팁으로 제작된 마이크로액추에이터의 gap은 0.55㎛∼l.35㎛었다. 0.55㎛ gap을 갖는 제작된 마이크로액추에이터의 경우에 13V의 낮은 전압에서 1㎛의 변위와 2.3μN의 발생력을 나타내었다. 이 마이크로액추에이터의 1차 공진주파수의 측정값의 23kHz이었다.

  • PDF

Unified solutions for piezoelectric bilayer cantilevers and solution modifications

  • Wang, Xianfeng;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.759-780
    • /
    • 2015
  • Based on the theory of piezoelasticity, the static performance of a piezoelectric bilayer cantilever fully covered with electrodes on the upper and lower surfaces is studied. Three models are considered, i.e., the sensor model, the driving displacement model and the blocking force model. By establishing suitable boundary conditions and proposing an appropriate Airy stress function, the exact solutions for piezoelectric bilayer cantilevers are obtained, and the effect of ambient thermal excitation is taken into account. Since the layer thicknesses and material parameters are distinguished in different layers, this paper gives unified solutions for composite piezoelectric bilayer cantilevers including piezoelectric bimorph and piezoelectric heterogeneous bimorph, etc. For some special cases, the simplifications of the present results are compared with other solutions given by other researches based on one-dimensional constitutive equations, and some amendments have been found. The present investigation shows: (1) for a PZT-4 piezoelectric bimorph, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are about 19.59%, 23.72% and 7.21%, respectively; (2) for a PZT-4-Al piezoelectric heterogeneous bimorph with constant layer thicknesses, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are 9.85%, 11.78% and 4.07%, respectively, and the amendments of the electrode charges induced by an end shear force or an end moment are both 1.04%; (3) for a PZT-4-Al piezoelectric heterogeneous bimorph with different layer thicknesses, the maximum amendment of tip deflection approaches 23.72%, and the maximum amendment of electrode charge approaches 31.09%. The present solutions can be used to optimize bilayer devices, and the Airy stress function can be used to study other piezoelectric cantilevers including multi-layered piezoelectric cantilevers under corresponding loads.

고주파열응고술을 이용한 요부교감신경절제술에서 수술기주위의 온도변화 (Perioperative Temperature Changes Observed in Cases of Lumbar Sympathectomy Using RF Thermocoagulation)

  • 정배희;신근만;김현주;이기헌;김태성;홍순용;최영룡
    • The Korean Journal of Pain
    • /
    • 제13권2호
    • /
    • pp.196-201
    • /
    • 2000
  • Background: Currently, minimally invasive operations are preferred to open surgery whenever possible. Lumbar sympathectomy using RF (radiofrequency) thermocoagulation is both safe and minimally invasive. The problem with the technique is that it cannot be performed successfully in a significant number of cases. If the temperature change in the sole is monitored immediately after the procedure then it can be determined if the procedure needs to be repeated. Methods: A curved tip cannula, 150 mm long with a 10 mm active tip, was used for RF lumbar sympathectomy. The temperature of the soles of both the foot on the affected side and the foot on the control side was monitored immediately before the procedure, immediately after making the L2 lesion, immediately after making the L3 lesion and at 5, 10, and 15 minutes after the procedure. Results: No statistically significant difference was observed in the temperature of the two soles before making the lesions. In the 24 of the 27 patients, there were prominent differences in temperature between the two soles at 10 minutes after the procedures. 11 of the 24 patients showed a significant temperature change after the first trial. But the remaining 13 required a second lesion on L2 and L3. Conclusions: We judged the success of the operation in the operating room by monitoring the temperature difference in the soles of the feet. When no increase in the temperature difference is observed, we can move the electrode and make another lesion. With this procedure, we can drastically increase the success rate of the procedure.

  • PDF

초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발 (Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage)

  • 전종업;이창수;최재준;민동기;전동렬
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

날개전극형 코로나 모터의 기초 회전특성 및 에너지 효율 (Basic Rotation Characteristics and Energy Efficiencies of a Blade-Type Corona Motor)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1862-1868
    • /
    • 2010
  • A corona motor, as one of a powerful cooling means of microelectronic devices, has been employed because of its very simple structure of no coils and no brushes. In this paper, the effect of polarity of applied voltage and the number of blade corona electrodes on the fundamental properties of rotation of the motor was investigated. The I-V and rotation characteristics of the blade corona electrode were significantly different from the different polarities of applied voltages and the blade corona electrode numbers, due to the different space charge effect resulted by the different migration mobility of the positive and negative ions generated near the blade corona electrode tip of the rotor of the motor. The rotation speed of the motor was influenced significantly by the polarity of corona discharge, the number of blades, and mass of rotor. At the same corona current, an effective rotation can be obtained with the positive corona caused by the lower ion mobility. On the other hand, the higher rotation speed can be obtained with the negative corona resulted from its higher corona current. The highest rotation speed and energy efficiency can be obtained with the rotor having 4 blades.

핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향 (Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing)

  • 이대영;유재훈;류태우;황정호;김용준
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발 (Development of Tactile Sensor for Detecting Contact Force and Slip)

  • 최병준;강성철;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.