• 제목/요약/키워드: Electrode Shape

검색결과 447건 처리시간 0.029초

리튬-공기전지용 탄소/망간산화물 복합구조 공기극의 전기화학적 특성 (Electrochemical Properties of Carbon/Manganese Oxide Composite Air Cathode for Lithium-Air Batteries)

  • 이선영;차은희;모선일;주재백;조원일
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.198-205
    • /
    • 2012
  • 리튬-공기전지 공기극으로서 탄소 상에 직접 수열합성법으로 망간산화물을 생성한 탄소지지 망간산화물 촉매를 합성하였다. 각 수열합성 조건에 따라서 만들어진 복합체에 대한 XRD, FE-SEM 분석을 통하여, 복합체의 결정구조, 형태, 크기 등을 확인하였는데 특히, 수열합성 온도 및 시간이 각각 $170^{\circ}C$, 12시간인 조건에서 만들어진 산화망간은 길이가 40-50 nm인 막대 모양을 갖는 것으로 나타났다. 합성된 복합체를 사용하여 만든 공기극과 리튬금속을 음극으로 하는 코인셀 형태의 리튬-공기전지를 만들어 전기화학적 특성을 조사한 결과 초기 방전 용량이 3,852 mAh/g으로 높았고 충 방전 횟수가 4회 정도 발현되었다.

DC 마그네트론 스퍼터링 방법에 의해 증착된 Mo 박막의 특성 (Characteristics of Mo Thin Films Deposited by DC Magnetron Sputtering)

  • 공선미;소우빈;김은호;정지원
    • Korean Chemical Engineering Research
    • /
    • 제49권2호
    • /
    • pp.195-199
    • /
    • 2011
  • DC 마그네트론 스퍼터링 방법을 이용하여 soda lime glass 위에 Mo 박막을 증착하였다. DC power와 증착 압력을 변화시키면서 상온에서 Mo 박막을 증착하였고 증착된 박막의 전기적 성질 및 구조적 성질을 조사하였다. DC power가 증가할수록 박막의 증착속도는 증가되었고 전기 저항도는 감소하였으며 박막의 결정성이 향상되는 것을 관찰할 수 있었다. 증착 압력이 감소할수록 박막의 증착속도와 전기 저항도가 감소하였으며 가늘고 긴 모양의 결정입자가 조밀하게 박막을 형성하였다. 압력이 증가함에 따라서 결정입자는 원형으로 변형되었으며 박막의 표면에 공극의 생성이 증가하였다. Mo 박막의 전기 저항도는 Mo 원자에 결합된 산소의 양이 많아질수록 증가하게 되고, 박막의 결정성이 높아지면 산소의 결합도가 감소하여 낮은 저항도를 갖게 되는 것을 확인하였다.

TVS에서 아크 플라즈마의 분광 측정 연구 (Spectrum Measurement Study of Arc Plasma on Triggered Vacuum Switch (TVS))

  • 남상훈;한영진;이병준;김상희;박성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1732-1734
    • /
    • 2001
  • The purpose of this experiment was to develope Triggered Vacuum Switch(TVS) and to improve understanding of the high current vacuum arc phenomena in the TVS. The TVS has an array of rods of alternate polarity in which a fixed gap spacing is maintained between the rods. The cross section of each rod has trapezoidal shape. Breakdown of the TVS produced high current vacuum arc plasma. A spectroscopic measurement was performed over 20 kA peak current in the center of electrodes, in the vicinity of cathode, and outside electrodes. The electrode material tested was Fe. Measured Fe spectrum range was from 200 nm to 900 nm. Measurement result showed that over 90 percent of the charge states were FeII and the others were FeI and FeIII. The electron temperature was determined from the relative line intensity ratio methode of FeII system by assuming the local thermal equilibrium(LTE). The electron temperature at the center of electrodes was measured as 1.5 eV at 26 kA peak current. The electron temperature varied with its peak current. Intensity of spectrums is the highest in the vicinity of the cathode. Further we will also present study result of the diode phenomena in the TVS.

  • PDF

고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률 (V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer)

  • 백승명;천현권;;석복렬;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

광도파로형 초저주파(ELF) 전계계측 센서의 개발 (Developments of Extremely Low Frequency Electric Field Sensor using Guided-wave Optical Modulator)

  • 최영규;김문환
    • 대한전자공학회논문지SD
    • /
    • 제39권6호
    • /
    • pp.1-7
    • /
    • 2002
  • 비대칭 도파로 마흐젠더(Mach-Zehnder)형 Ti:LiNbO₃ 광변조기를 이용하여 아주 낮은 저주파대 (ELF:Extremely Low Frequency)의 전계계측을 시도하였다. Ti:LiNbO₃ 광변조기를 이용하는 전계센서의 감도는 광변조기의 전극구조에 따라 크게 달라지는 것을 알 수 있었다. 이의 확인을 위한 실험적 연구로서 플레이트(plate)형 프로브안테나를 부착한 광변조기를 제작하여 저주파 전계강도를 측정하였다. 전계강도의 측정은 주파수범위 60㎐ 에서 100㎑ 까지, 전계강도 0.1V/㎝ 에서 60V/㎝ 까지의 범위를 측정하였다. 10㎜×10㎜ 프로브안테나의 경우, 60㎐, 0.1 V/㎝의 피측정전계에서 10㎷의 감도를 얻을 수 있었다. 저주파 전계강도를 측정하기 위해서는 넓은 유효면적을 갖는 플레이트형 프로브안테나가 일반적인 다이폴 안테나보다 유용하다는 것을 확인하였다. 피측정 전자계의 주파수 범위에 따라 안테나의 유효면적을 적당히 조절한다면 더 좋은 센서의 감도를 얻을 수도 있다.

Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.475-484
    • /
    • 2020
  • The prediction of the ground conditions ahead of a tunnel face is very important, especially for tunnel boring machine (TBM) tunneling, because encountering unexpected anomalies during tunnel excavation can cause a considerable loss of time and money. Several prediction techniques, such as BEAM, TSP, and GPR, have been suggested. However, these methods have various shortcomings, such as low accuracy and low resolution. Most studies on electrical resistivity tomography surveys have been conducted using numerical simulation programs, but laboratory experiments were just a few. Furthermore, most studies of scaled model tests on electrical resistivity tomography were conducted only on the ground surface, which is a different environment as compared to that of mechanized tunneling. This study performed a laboratory experimental test to extend and verify a prediction method proposed by Lee et al., which used electrical resistivity tomography to predict the ground conditions ahead of a tunnel face in TBM tunneling environments. The results showed that the modified dipole-dipole array is better than the other arrays in terms of predicting the location and shape of the anomalies ahead of the tunnel face. Having longer upper and lower borehole lengths led to better accuracy of the survey. However, the number and length of boreholes should be properly controlled according to the field environments in practice. Finally, a modified and verified technique to predict the ground conditions ahead of a tunnel face during TBM tunneling is proposed.

전해증착 Cu(In,Ga)Se2 박막의 Se가스 분위기 열처리 (Annealing of Electrodeposited Cu(In,Ga)Se2 Thin Films Under Se Gas Atmosphere)

  • 신수정;김명한
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.461-467
    • /
    • 2011
  • Cu(In, Ga)$Se_2$ (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$, and $Se^{4+}$ ions at -0.6 V (SCE) and pH. 1.8. In order to induce recrystallization, the electrodeposited $Cu_{1.00}In_{0.81}Ga_{0.09}Se_{2.08}$ (25.0 at.% Cu + 20.2 at.% In + 2.2 at.% Ga + 52.0 at.% Se) precursor films were annealed under a high Se gas atmosphere for 15, 30, 45, and 60 min, respectively, at $500^{\circ}C$. The Se amount in the film increased from 52 at.% to 62 at.%, whereas the In amount in the film decreased from 20.8 at.% to 9.1 at.% as the annealing time increased from 0 (asdeposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted with the In present in the precursor films, resulting in the formation of the volatile $In_2Se$. CIGS precursor grains with a cauliflower shape grew as larger grains with the $CuSe_2$ and/or $Cu_{2-x}Se$ faceted phases as the annealing times increased. These faceted phases resulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the empty spaces between the grains were not removed via annealing. Uniform thicknesses of the $MoSe_2$ layers occurred at the 45 and 60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused through the CIGS film. The results obtained in the present research were sufficiently different from comparable studies where the recrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • 김종수;박재홍;이성훈;김광철;권애경;박홍이
    • 반도체디스플레이기술학회지
    • /
    • 제5권3호
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF