• Title/Summary/Keyword: Electrode Probe

Search Result 187, Processing Time 0.026 seconds

Triggered Electrooculography for Identification of Oculomotor and Abducens Nerves during Skull Base Surgery

  • Jeong, Ha-Neul;Ahn, Sang-Il;Na, Minkyun;Yoo, Jihwan;Kim, Woohyun;Jung, In-Ho;Kang, Soobin;Kim, Seung Min;Shin, Ha Young;Chang, Jong Hee;Kim, Eui Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.282-288
    • /
    • 2021
  • Objective : Electrooculography (EOG) records eyeball movements as changes in the potential difference between the negatively charged retina and the positively charged cornea. We aimed to investigate whether reliable EOG waveforms can be evoked by electrical stimulation of the oculomotor and abducens nerves during skull base surgery. Methods : We retrospectively reviewed the records of 18 patients who had undergone a skull base tumor surgery using EOG (11 craniotomies and seven endonasal endoscopic surgeries). Stimulation was performed at 5 Hz with a stimulus duration of 200 μs and an intensity of 0.1-5 mA using a concentric bipolar probe. Recording electrodes were placed on the upper (active) and lower (reference) eyelids, and on the outer corners of both eyes; the active electrode was placed on the contralateral side. Results : Reproducibly triggered EOG waveforms were observed in all cases. Electrical stimulation of cranial nerves (CNs) III and VI elicited positive waveforms and negative waveforms, respectively, in the horizontal recording. The median latencies were 3.1 and 0.5 ms for craniotomies and endonasal endoscopic surgeries, respectively (p=0.007). Additionally, the median amplitudes were 33.7 and 46.4 μV for craniotomies and endonasal endoscopic surgeries, respectively (p=0.40). Conclusion : This study showed reliably triggered EOG waveforms with stimulation of CNs III and VI during skull base surgery. The latency was different according to the point of stimulation and thus predictable. As EOG is noninvasive and relatively easy to perform, it can be used to identify the ocular motor nerves during surgeries as an alternative of electromyography.

Feasibility Study of a Verification Tool for the Treatment of Cervical Intraepithelial Neoplasia Using Relative Electrical Property Change Before and After Laser Irradiation (레이저 조사 전후 자궁경부조직의 상대적 전기물성 스펙트럼 변화를 이용한 자궁경부 이형성증 치료검증도구의 가능성 평가)

  • Jun Beom, Heo;Tingting, Zhang;Tong In, Oh;Dong Choon, Park
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.409-416
    • /
    • 2022
  • Since the detection of cervical intraepithelial neoplasia (CIN) is increasing due to regular cervical cancer screening, there is a high demand for simpler tools to diagnose and treat CIN in the clinic. In this study, we proposed an electric property of cervical tissue to verify treatment using a laser. At first, we observed the depth and width of ablated cervical tissues for 29 samples according to four different pulse energy of the fractional CO2 laser to find enough pulse energy to reach the basement layer for initiated CIN. And then, the relative frequency differences in impedance spectrum before and after laser irradiation for ten non-CIN samples were collected using bioimpedance spectroscopy with a multi-electrode probe. As a result, the laser ablated the cervical tissues with a depth of more than 300 ㎛ at 100 mJ pulse energy. Also, we confirmed that the relative changes of electrical property for cervical tissue increased as the pulse energy of laser output increased, and the variation between samples decreased. Since the relative change in electrical properties of cervical tissue can be easily and quickly measured, the proposed technique paves the way for further verification and follow-up study of laser treatment for CIN.

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.

The Study of Ag Thin Film of Suitable Anode for T-OLED: Focused on Nanotribology Methode (UV 처리에 의한 T-OLED용 산화전극에 적합한 Ag 박막연구: Nano-Mechanics 특성 분석을 중심으로)

  • Lee, Kyu Young;Kim, Soo In;Kim, Joo Young;Kwon, Ku Eun;Kang, Yong Wook;Son, Ji Won;Jeon, Jin Woong;Kim, Min Chul;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • The work function of Ag (silver) is too low (~4.3 eV) to be used as an electrode of T-OLED (Top Emission Organic Light Emitting Diode). To solve this weakness, researches used plasma-, UV-, or thermal treatment on Ag films in order to increase the work function (~5.0 eV). So, most of studies have focused only on the work function of various treated Ag films, but studies focusing on nanomechanical properties were very important to investigate the efficiency and life time of T-OLED etc. In this paper, we focused on the mechanical properties of the Ag and $AgO_x$ film. The Ag was deposited on a glass substrate with the thickness of 150 nm by using rf-magnetron sputter with the power was fixed at 100 W and working pressure was 3 mTorr. The deposited Ag film was UV treated by UV lamp for several minutes (0~9 min). We measured the sheet resistance and mechanical property of the deposited film. From the experimental result, there were some differences of the sheet resistance and surface hardness of Ag thin film between short time (0~3 min) and long time UV treatment. These result presumed that the induced stress was taken place by the surface oxidation after UV treatment.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF