• Title/Summary/Keyword: Electrode Diameter

Search Result 360, Processing Time 0.03 seconds

Half spherical electrode machining in micro EDM (미세 방전 가공을 이용한 반구형 전극 제작)

  • 김기현;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1080-1084
    • /
    • 2001
  • In manufacturing a micro die with half spherical cavity by MEDM, it is necessary to prepare an electrode with the same shape. This paper suggests a simple method to manufacture a half spherical electrode based on tool wear. The tool wears more rapidly at the edge of a cylindrical electrode. In order to make a half spherical micro electrode, cylindrical electrode was fed into the workpiece by the distance of its radius. The d/R(depth/Radius) value varied with respect to capacitance and electrode diameter. The smaller the size of electrode was, the closer the electrode tip geometry approached to a half sphere.

  • PDF

Effect of Asymmetric Electrode Structure on Electron Emission of the Pb(Zr0.8Ti0.2)O3 Ferroelectric Cathode (Pb(Zr0.8Ti0.2)O3강유전 음극에서 비대칭 전극구조가 전자 방출 특성에 미치는 영향)

  • 박지훈;김용태;윤기현;김태희;박경봉
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.92-98
    • /
    • 2002
  • To investigate the electrode structural effect on the ferroelectric electron emission, the electric field distribution in a 2-dimensional structure was calculated as a function of upper electrode diameter, and the switching charge density and emission charge were measured simultaneously. The simulation of the electric field distribution showed that an asymmetric electrode structure could cause a stray field on the bare surface of the ferroelectric cathode near the edge of upper electrode. The distance of stray field from the electrode edge increased with increasing ferroelectric thickness, but it did not depend on the upper electrode diameter. The switching charge density increased more on the cathode with smaller upper electrode diameter. This was attributed to the stray field on the bare ferroelectric surface near the electrode edge, because the stray field for the asymmetric ferroelectric cathode enhanced polarization switching near the electrode edge. From the switching charge density, the distance of stray field from the electrode edge was calculated as about 11-14${\mu}{\textrm}{m}$. The threshold voltage of electron emission was 61-68 kV/cm, which was almost 3 times lager than the coercive voltage. The threshold voltage was not determined just by coercive voltage, but by strength and distance of the stray-field, which largely depended on the geometrical structure of ferroelectric cathode.

Evaluation of the Machining Method on the Formation of Surface Quality of Upper Electrode for Semiconductor Plasma Etch Process (반도체 플라즈마 에칭 상부 전극의 표면 품질 형성에 관한 가공법 평가)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • This study has been focused on properties of surface technology for large diameter upper electrode using in high density plasma process as like semi-conductor manufacturing process. The experimental studies have been carried out to get mirror surface for upper electrode. For a formation of high surface quality upper electrode, single crystal silicon upper electrode has been mechanical and chemical machining worked. Mechanical machining work of the upper electrode is carried out with varying mesh type using diamond wheel. In case of chemical machining work, upper electrode surface roughness was observed to be strongly dependent upon the etchant. The different surface roughness characteristics were observed according to etchant. The machining result of the surface roughness and surface morphology have been analyzed by use of surface roughness tester, laser microscope and ICP-MS.

Charging Characteristics of Electrostatic Sprayer Applied Square Pulse (구형파 펄스를 인가한 정전분무 장치의 대전량 특성)

  • 박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.573-578
    • /
    • 2003
  • In this study, new type of induction charging system for electrostatic spraying was manufactured and proposed to improve the electrical safety and charging efficiency. And parameters of proposed system to generate the maximum deposition current with electrical safety were selected and investigated. The selected parameters were frequency of square pulse and thickness of insulation material, outer diameter of device and thickness and positions of electrode. Charging quantity of water drop was measured by deposition current detected from sensing plate indirectly. The maximum deposition current for each parameter were 3.5[uA] at the frequency of 15[kHz] and thickness of 0.25[mm] insulating layer. And maximum deposition currents were 2.8[uA] and 3.0[uA] at 25[mm] outer diameter of charging device and 0.25[mm] thickness of electrode each. Effects of electrode position from spraying nozzle on deposition current was a little.

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Control of Taper Shape in Micro-Hole Machining by Micro-EDM (방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어)

  • Kim Dong Jun;Yi Sang Min;Lee Young Soo;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

Treatment of Heavy Metal Wastewater Bed Electrode Reactor by a Fluidized 1. Distribution of Local Mass Transfer Coefficients on the Current Feeder (유동층 전극반응기를 이용한 중금속폐수의 처리에 관한 연구 1. 전류공급원에서의 국부물질전달계수의 분포)

  • 황영기;정은혁
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Varing the flow velocity of solution and particle diameter, the mass transfer coefficient of the local electrode on current feeder has been measured in an empty flow reactor, an inert fluidized bed electrode reactor, and an active fluidized bed electrode reactor. It had its maximium value when the bed porosity was 0.6 to 0.65 and decreased with in- creasing the height of local electrode. The mass transfer coefficient was found to be high especially when higher particle was fluidized. Electrochemical deposition of copper dissolved in the synthesized wastewater has been performed in the active fluidized bed electrode reactor. The deduction rate was higher than 90% and the residual concentration of copper decreased to less than 5ppm.

  • PDF

Fabrication and Optimization of Mesoporous Platinum Electrodes for CMOS Integrated Enzymeless Glucose Sensor Applications (CMOS 집적회로 기반의 무효소 혈당센서 적용을 위한 메조포러스 백금 전극 제작 및 최적화)

  • Seo, Hye-K.;Park, Dae-J.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1627-1628
    • /
    • 2006
  • In this paper, mesoporous only platinum electrode and micro pore platinum electrode with mesoporous Pt are fabricated and characterized on a silicon substrate to check their usability as enzymeless sensing electrodes for developing non-disposable glucose sensors integrated with silicon CMOS read out circuitry. Since most of electrochemical glucose sensors are disposable due to the use of the enzymes that are living creatures, these are limited to use in the in-vivo and continuous monitoring system applications. The proposed mesoporous Pt electrode with approximately 2.5nm in pore diameter and 150nm in height was fabricated by using a nonionic surfactant $C_{16}EO_8$ and an electroplating technique. The micro pore Pt electrode with mesoporous Pt means the mesoporous Pt electrode fabricated on top of micro pore arrayed Pt electrode with approximately $10{\mu}m$ in pore diameter and $80{\mu}m$ in height. The measured current responses at 10mM glucose solution of plane Pt, micro pore Pt, micro pore with mesoporus Pt, and mesoporous Pt electrodes are approximately $9.9nA/mm^2$, $92.4nA/mm^2$, $3320nA/mm^2$ and $44620nA/mm^2$, respectively. These data indicate that the mesoporous Pt electrode is much more sensitive than the other Pt electrodes. Thus, it is promising for non-disposable glucose sensor and electrochemical sensor applications.

  • PDF

A New Measurement Method of Dielectric Constants Applied the Principles of Cross Capacitance (Cross Capacitance 원리를 작용한 새로운 유전상수 측정방법 제안)

  • Kim, Han-Jun;Lee, Rae-Duk;Kang, Jeon-Hong;Yu, Kwang-Min;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1084-1087
    • /
    • 2002
  • The guard-ring type 3-terminal parallel plate electrodes proposed by ASTM D 150-81 and IEC 250 have been widely used for measurement of dielectric constants of solid dielectrics. However the method using this electrodes causes many uncertainty associated with the measurement errors of the diameter of the guarded electrode. the gap between guarded and guard-ring electrode. the distance of two active electrodes(the thickness of specimen), the roughness and contamination of surface of electrode and specimen. close adherence grade of electrode and specimen. In this paper. a new electrode system of cross capacitance type based on Thompson-Lampard theorem is designed and is employed for the measurement of dielectric constant. The results of simulation of guard-ring electrode and cross capacitance electrode using FEM program show that distance measurement between two electrodes in guard-ring electrode produces large uncertainty. on the other hand this effect in cross capacitance electrode is negligible. Furthermore. the air gap effects in the cross capacitance electrode is 5.6 times less sensitive than that in guard-ring electrode by assuming air gap of $50{\mu}m$.

  • PDF

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.