• 제목/요약/키워드: Electrochemical study

검색결과 2,360건 처리시간 0.033초

Study on electrochemical performances of sulfur-containing graphene nanosheets electrodes for lithium-sulfur cells

  • Son, Ki-Soo;Kim, Seok
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.113-116
    • /
    • 2014
  • Due to their morphology, electrochemical stability, and function as a conducting carbon matrix, graphene nanosheets (GNS) have been studied for their potential roles in improving the performance of sulfur cathodes. In this study, a GNS/sulfur (GNS/S) composite was prepared using the infiltration method with organic solvent. The structure, morphology and crystallinity of the composites were examined using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The electrochemical properties were also characterized using cyclic voltammetry (CV). The CV data revealed that the GNS/S composites exhibited enhanced specific-current density and ~10% higher capacity, in comparison with the S-containing, activated-carbon samples. The composite electrode also showed better cycling performance for multiple charge/discharge cycles. The improvement in the capacity and cycling stability of the GNS/S composite electrode is probably related to the fact that the graphene in the composite improves conductivity and that the graphene is well dispersed in the composites.

화학적 활성법으로 제조된 EDLC용 고다공성 탄소전극의 전기화학 특성 (Electrochemical Characteristics of Highly Porous Carbon Prepared by Chemical Activation Method for EDLC)

  • 어수미;김한주;오승모;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2010-2012
    • /
    • 2005
  • Activated carbon was activated with chemical treatment to attain high surface area with porous structure. We have been considered activated carbon is the ideal material for high voltage electric double layer capacitor due to their high specific surface area, good conductivity and chemical stability. In this study we found that increase in electrochemical capacitance due to activated carbon. Also chemically activated carbon and water treatment have resulted larger capacitance and also exhibits better electrochemical behavior, and is about 15% more than in untreated state. The structural change in activated carbon through chemical treatment activation was investigated by using SEM and XRD. In this study, the dependence of the activation behavior with KOH in the micro structure of host materials will be discussed. Furthermore, the relation to the electric double layer capacitance, especially the specific capacitance per unit area, is also discussed.

  • PDF

화학 가스센서를 활용한 구취측정 방법에 관한 연구 (A Study on the Measurement of Halitosis of Human Mouth with Chemical Gas Sensor Arrays)

  • 이석준;김선태;김한수
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.279-285
    • /
    • 2011
  • This study was carried out to apply chemical gas sensors for the identification of bad breath which is one of the important sensitive problem for the humans' daily life. Seven sensors, including five semiconductor sensors and two electrochemical sensors, were tested for the three panels three times in several conditions. The results showed that the reproducibility of sensors were generally good, and electrochemical sensors showed better reproducibility while semiconductor sensors showed better sensitivity. No rinsing before measurement showed relatively better results in terms of both sensitivity and reproducibility. Semiconductor gas sensors for hydrogen sulfide shows the highest sensitivity, and it was recommended to use the odor-free bag for the measurement of bad breath.

무연솔더 내 마이그레이션 플럭스개발에 관한 연구 (A Study on Development of Flux to Restrict Occurrence of ion Migration in Lead-Free Solder)

  • 유동수;임재훈;우성우
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2005년도 학술발표대회 논문집
    • /
    • pp.385-392
    • /
    • 2005
  • The restriction of the use of hazardous substances in electrical and electronic equipment legislation mandates the substitution of lead and other hazardous substances in electronics products by July 2006. Due to this legislative pressure, the electronics industry is moving to adoption of lead free solders. In this paper, we investigated a flux to restrict generating electrochemical migration in lead-free solder. The lead-free solders used in this study were Sn-0.7Cu-0.01P and Sn-3.0Ag-0.5Cu. To measure the resistance of electrochemical migration, the dew-cycle test and water drop test were adopted. As the result, now flux having high durable of electrochemical migration was developed.

  • PDF

Electrochemical Behavior of Tm ion and Bi ion in LiCl-KCl Molten Salt

  • Kim, Beom-Kyu;Han, Hwa Jeong;Park, Ji Hye;Kim, Won Ki;Park, Byung Gi
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.83-84
    • /
    • 2017
  • This study, electrolytic behavior of Thulium and Tm-Bi ion system was studied. The electrochemical behavior of Tm was studied in $LiCl-KCl-TmCl_3$ molten salts using electrochemical techniques Cyclic Voltammetry on tungsten electrodes at 773K. During the process of CV and SWV, intermetallic compound were observed Bi-Tm. Further study, in order to determine clarity of diffusion coefficient in this experiment, we will compare result of electrochemistry method and we also need to quantitative research.

  • PDF

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan;Lee, Woong;Yang, SeungCheol;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.358-364
    • /
    • 2021
  • In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가 (Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.13-18
    • /
    • 2024
  • 웨어러블 디바이스용 유연 전극 소재 개발을 위해 탄소섬유 토우(carbon fibers tow)의 전처리에 따른 전기화학적 특성을 조사하고, 이를 활용하여 포도당을 타겟으로 전기화학적 비효소 센서를 제작하였다. 탄소섬유 토우는 탈사이징(desizing)과 활성화(activation) 공정을 통해 전처리 되었으며, 활성화는 화학적 산화와 전기화학적 산화의 두 가지 방법으로 이루어졌다. 전처리된 샘플은 주사전자 현미경(SEM)을 이용하여 표면 분석되었으며, 전기화학적 특성 및 센싱성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. 탄소섬유 토우는 전처리를 통해 감소된 Ret와 ΔEp, 증가된 Ip 등 향상된 전기화학적 특성을 보였으며, 두 활성화 방법에서는 유사한 전기화학적 특성이 얻어졌다. 본 연구에서는 전기화학센서 적용을 위해 전기화학적으로 활성화된 탄소섬유 토우를 최종 전극 물질로 선정하였다. 이 전극을 기반으로 제작된 비효소적 포도당 검출 센서는 0.09899~3.754 mM과 3.754~50 mM의 선형 구간에서 각각 0.744 mA/mM과 0.330 mA/mM 정도의 향상된 감도를 보였다. 본 연구를 통해 탄소섬유 토우의 전극 소재로서 사용 가능성을 확인했으며, 고성능 유연 전극 소재 개발에 기초 연구로 활용 가능할 것으로 기대된다.

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah;Azis, Thamrin;Lindayani, Lindayani;Wibowo, Dwiprayogo;Salim, La Ode Agus;Aladin, Andi;Nurdin, Muhammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.394-401
    • /
    • 2019
  • The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.