• Title/Summary/Keyword: Electrochemical process

Search Result 1,269, Processing Time 0.024 seconds

An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth

  • Othman, Mohd Azlishah;Ahmad, Badrul Hisham;Amat, Noor Faridah
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.635-646
    • /
    • 2013
  • This technical paper contains the information of the Dye-Sensitized Solar Cells (DSSC) working principal where diffusion mechanism acts as electron transport to absorb the sunlight energy to generate the electrical energy. DSSC is photo electrochemical cell that implements the application of photosynthesis process. The performance of electron transport in DSSC has been reviewed in order to enhance the performance and efficiency of electron transport. The improvement of the electron transport also discussed in this paper.

Effects of process variables on morphology of palladium metal deposit in hydrochloric acid medium

  • kim Min-Seuk;Lee Jae-Chun;Kim Won-Back;Jeong Jin-Ki;Nam Chul-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.642-647
    • /
    • 2003
  • Palladium is widely used for several applications and recovery of palladium from secondary sources becomes increasingly important since palladium is one of maldistributed platinum group metals. Electrochemical recovery of dense palladium metal sheet from Pd leaching solution is a simple and easily controlled method. The surface morphology of the recovered Pd metal was significantly affected by current density and temperature. Dense deposit morphology was in higher stress state regardless of preparation condition under $55^{\circ}C$. Rising temperature up to $70^{\circ}C$ had a stress releasing effect besides densification of Pd deposit.

  • PDF

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

A Study on the Die Casting of Mg-9Al-1Zn Alloy for Air Bag Case (Mg-9Al-lZn 합금 자동차 에어백 케이스의 다이캐스팅에 관한 연구)

  • Kim, Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.77-83
    • /
    • 2002
  • Magnesium alloys casting are gaining increased acceptance in the automotive and electronic industeries and die casting is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of Mg-9Al-lZn alloy fabricated by die casting process for development of air bag case. The microstructure of die casted specimen were composed of pro-eutectic magnesium solid solution and $\beta$(Mg17Al12) precipitates. The tensile strength of as-fabricated Mg-9Al-lZn alloy revealed 231.4MPa. It was found that Mg-9Al-lZn alloy have good corrosion resistance in electrochemical polarization test.

Study on Redox State of Environmental Pollutant

  • Choi, Chi-Nami;Yang, Hyo-Kyung;Na, Eun-Jung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.65-71
    • /
    • 2001
  • The chemical behavior and properties related to the redox state of environmental pollutants were investigated using electrochemical methods. Measurements were taken of variations in the redox potential and cyclic polarization current. The results established the influence of various factors, including concentration, temperature, salt, and pH, on the redox potential and current. These factors were determined to effect the result of the redox reaction. Optimum conditions were also established for each case. It was clearly established that the electrode reaction was from a reversible to an irreversible process, plus it was also mixing reaction current controlled.

  • PDF

Electrochemical Properties of Polyaniline Cathode for Lithium Secondary Batteries (리튬 2차 전지용 Polyaniline cathode의 전기화학적 특성)

  • Kim, H.C.;Kim, J.U.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1685-1687
    • /
    • 1996
  • Recently, conducting polymer has been much attracted as novel materials because of its electronic behavior and functional application by doping process. In this paper, we electrochemically synthesized polyaniline films under potential sweep conditions, which exhibit high electric conductivity about 200 S/cm. Specific energy of 600 Wh/kg and Ah efficiency 98% were achieved during the charge/discharge cycling using liquid electrolyte system. On the other hand, consequences of the cycling were 260 Wh/kg and 95% Ah efficiency using polyethylene oxide(PEO) based solid-state electrolyte system.

  • PDF

Thickness Characteristics and Improved Surface Adhesion of a Polypyrrole Actuator by Analysis of Polymerization Process

  • Ryu Jaewook;Jung Senghwan;Lee Seung-Ki;Kim Byungkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1910-1918
    • /
    • 2005
  • Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better. adhesion than non-sandblasted and non-thiol treated substrate.

Electrochemical characteristics of Co/PVA composite electrode for supercapacotor (수퍼커패시터용 Co/PVA복합전극의 전기화학적특성)

  • Lee, Hee-Woo;Kim, Han-Joo;Ohsaka, Takeo;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.577-580
    • /
    • 2001
  • Very fine cobalt oxide ambigel powder were prepared using a unique solution chemistry associated with the sol-gel process. The mesoporous structure of the initial gel is maintained by removing fluid under conditions where the capillary forces that result extraction are either low or no existent, are either low or nonexistent. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of supercapacitor. But $CoO_x$ have the low voltage, so we experiment using Co/PVA composite electrode.

  • PDF

A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여-)

  • 박재우;김용덕;황응림;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Effects of Chloride Ion on Accelerator and Inhibitor during the Electrolytic Cu Via-Filling Plating (전해 Cu Via-Filling 도금에서 염소이온이 가속제와 억제제에 미치는 영향)

  • Yu, Hyun-Chul;Cho, Jin-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.158-161
    • /
    • 2013
  • Recently, the weight reduction and miniaturization of the electronics have placed great emphasis. The miniaturization of PCB (Printed Circuit Board) as main component among the electronic components has also become progressed. The use of acid copper plating process for Via-Filling effectively forms interlayer connection in build-up PCBs with high-density interconnections. However, in the case of copper-via filled in a bath, which is greatly dependent on the effects of additives. This paper discusses effects of Cl ion on the filling of PCB vias with electrodeposited copper based on both electrochemical experiment and practical observation of cross sections of vias.