• 제목/요약/키워드: Electrochemical photovoltaic cells

검색결과 51건 처리시간 0.026초

전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰 (Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells)

  • 김두환;한치환;성열문
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

이산화티타튬 페이스트에 TBA 첨가에 따른 염료감응 태양전지의 효율향상 및 전기화학적 분석 (Improvement of Efficiency in Dye-Sensitized Solar Cells with Addition of TBA to the TiO2 Paste and Its Electrochemical Analysis)

  • 이민오;정초롱;최우열;조임현
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.124-129
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are considered as promising alternatives to conventional photovoltaic device. However, commercialization of the DSSCs is restricted due to the low efficiency. In this paper, highly efficiency DSSCs were fabricated by the adding the TBA to the $TiO_2$ paste. $TiO_2$ photoanode added 0.2 M TBA in DSSCs are shown the best efficiency of 9.14 %. This result ascribed to improvement of the connection between the $TiO_2$ nanoparticles by the addition of the optimized amount TBA. The morphology of the photoanode was observed by FE-SEM. Further investigation about the kinetics of the electrochemical processes are performed by the EIS analysis. Longest diffusion length was obtained in case adding 0.2 M of TBA to $TiO_2$ paste, which was matched well with the improved efficiency.

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications

  • Padha, Bhavya;Verma, Sonali;Mahajan, Prerna;Arya, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.167-176
    • /
    • 2022
  • Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.

Electrochemical Synthesis of Compound Semiconductor Photovoltaic Materials

  • 유봉영;전병준;이동규
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.11.1-11.1
    • /
    • 2010
  • As one of the non-vacuum, low temperature fabrication route, electrochemical synthesis has been focused for pursuing the cost-effective pathway to produce high efficiency photovoltaic devices. Especially the availability to form the thin film structure on flexible substrate would be the great advantage of electrochemical process. The successful synthesis of the most favorable absorber materials such as CdTe and CIGS has been reported by many researchers, however, the efficiency of electrochemically synthesized could not exceed that from vacuum process, because of microstructural controllability and compositional variation on devices. In this study, we represent the effect of process parameters on the microstructure and composition of compound semiconductor during the synthesis, and propose the photovoltaic characteristics of electrochemically synthesized solar cells.

  • PDF

Synthesis and Applications of Dicationic Iodide Materials for Dye-Sensitized Solar Cells

  • Nam, Heejin;Ko, Yohan;Kunnan, Sakeerali C.;Choi, Nam-Soon;Jun, Yongseok
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.214-222
    • /
    • 2019
  • Dye-sensitized solar cells (DSSCs) have been receiving growing attentions as a potential alternative to order photovoltaic devices due to their high efficiency and low manufacturing cost. DSSCs are composed of a photosensitizing dye adsorbed on a mesoporous film of nanocrystalline $TiO_2$ as a photoelectrode, an electrolyte containing triiodide/iodide redox couple, and a platinized counter electrode. To improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. Quite comparable efficiencies were obtained from electrolytes with new dicationic iodide salts. The best cell performance of 7.96% was obtained with dicationic salt of PBDMIDI.

The Fabrication and Characterization of the Photovoltaic Cells Composed of Polydiacetylene and Fullerene

  • Song Jeong-Ho;Kang Tae-Jo;Cho Young-Don;Lee Sun-Hyoung;Kim Jeong-Soo
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.217-222
    • /
    • 2006
  • Propargyl alcohol was coupled to 2,4-hexadiyne-1,6-diol (HDD) and crystallized in the process of ultraviolet irradiation-induced topochemical polymerization. The HDD polymer crystals were used as one component in the fabrication of organic photovoltaic cells, in combination with fullerene as the electron acceptor. The various structures of the produced photovoltaic cells included bilayer, trilayer, and bulk heterojunction structures. Their photovoltaic properties were analyzed in relation to crystal structure, electrochemical properties, and band structure of the HOD polydiacetylene polymers.

염료감응 태양전지의 전기화학적 접근을 통한 해석 (Electrochemical Approaches to Dye-Sensitized Solar Cells)

  • 조임현;임정민;남희진;전용석
    • 전기화학회지
    • /
    • 제12권4호
    • /
    • pp.301-310
    • /
    • 2009
  • 본 논문에서는 현재 많이 연구되고 있는 염료감응 태양전지에 대해 전기화학적 접근을 통해 설명한다. 특히, 기존 도핑 개념을 적용하는 반도체 태양전지와 다른 점을 비교 설명하고, 이론적으로 어떻게 태양전지가 형성될 수 있는지를 설명한다. 또한 염료감응 태양전지가 탄생되게 된 과정을 고찰해 본다. 이어서, 태양전지에서 많이 사용되는 전기화학적 분석법을 설명하고, 어떻게 적용될 수 있는지 임피던스 분석법을 통해 설명한다. 전기화학에서 많이 사용되는 임피던스와 순환전압전류법을 통해, 염료감응 태양전지를 이루는 주성분인 금속산화물과 염료, 전해질의 에너지준위 분석법에 대해서 간단히 소개한다.

염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향 (Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells)

  • 서현우;백현덕;김동민
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

CdSe Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Cells

  • Yum, Jun-Ho;Choi, Sang-Hyun;Kim, Seok-Soon;Kim, Dong-Yu;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.257-261
    • /
    • 2007
  • The electronic properties of quantum dots can be tuned by changing the size of particles without any change in their chemical composition. CdSe quantum dots, the sizes of which were controlled by changing the concentrations of Cd and Se precursors, were adsorbed on $TiO_2$ photoelectrodes and used as sensitizers for photovoltaic cells. For applications of CdSe quantum dot as sensitizers, $CdSe/TiO_2$ films on conducting glass were employed in a sandwich-type cell that incorporated a platinum-coated conductive glass and an electrolyte consisting of an $I^-/I_3^-$ redox. The fill factor (FF) and efficiency for energy conversion ($\c{c}$) of the photovoltaic cell was 62 % and 0.32 %, respectively.

폴리(옥틸티오펜)/풀러렌 벌크 이종접합의 광기전성에 미치는 CIS 입자의 블렌딩 효과 (The Blending Effect of Electro-deposited Copper-indium-diselenide Particles on the Photovoltaic Properties of Poly(3-octylthiophene)/Fullerene Bulk Heterojunction Cells)

  • 조영돈;이선형;김정수
    • 폴리머
    • /
    • 제34권1호
    • /
    • pp.84-87
    • /
    • 2010
  • 구리, 인디움, 셀레늄 이온을 포함한 혼합물을 전기화학적으로 환원하는 1회 반응으로 CIS 입자를 합성하였다. 합성된 입자를 폴리(옥틸티오펜/풀러렌으로 구성된 벌크이종접합에 블렌딩하거나 박막층으로 삽입하여 여러 가지 광기전셀을 제조하였다. CIS의 함량이 증가할수록 개방전압과 단락전류의 급격한 감소가 일어났다. 이러한 광기전성의 감소현상을 블렌드의 구조, 조성, 모폴로지를 분석 해석하였다.