• Title/Summary/Keyword: Electrochemical cell

검색결과 1,544건 처리시간 0.03초

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju;Seo, Won-Chul;Lim, Taeho
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.392-398
    • /
    • 2020
  • Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

Surface Treatment with CO2 to Improve Electrochemical Characteristics of Carbon Felt Electrode for VRFB

  • Yechan Park;Sunhoe Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.131-138
    • /
    • 2023
  • The carbon felt is usually hired as electrodes for vanadium redox flow battery (VRFB). In the study, surface modification of carbon felt under CO2 atmosphere with variables of operating various temperature ranges between 700℃ and 900℃. The qualitative and quantitative analysis were carried out such as scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) to observe degree of surface modification. Result of XPS analysis confirmed increase of carbon and oxidation functional group on the surface with increase of temperature. SEM image was discovered similar phenomena. Electrochemical characteristics such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed the improved electrode performance with increase of temperature. However, the electrochemical performance under treatments temperature of 900℃ was less than that of under treatment temperature of 850℃ due to weight loss at the treatment temperature of 900℃. From the CV and EIS results, the best electrochemical characteristics was at the temperature of 850℃. That of at the temperature of 900℃ was decreased due to weight loss. The energy efficiencies (EE) obtained from full cell test were 69.37, 80.76, 82.45, and 75.47%, at the temperature of 700, 800, 850, and 900℃, respectively.

저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석 (Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell)

  • 정희석;차훈;손정락;노승탁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF

직접 수소화붕소나트륨/과산화수소 연료전지의 산화극 연료 조성에 관한 연구 (A Study on Anode Fuel Composition of Direct Borohydride/Hydrogen Peroxide Fuel Cell)

  • 이태훈;유수상;오택현
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.514-523
    • /
    • 2021
  • This study investigated the effect of anode fuel composition on the performance of direct borohydride/hydrogen peroxide fuel cells (DBHPFCs). The effect of sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations on fuel cell performance was determined through fuel cell tests. Fuel cell performance increased with an increase in the NaBH4 concentration, whereas it decreased with an increase in the NaOH concentration. The anode fuel composition was selected as 10 wt% NaBH4+10 wt% NaOH+80 wt% H2O based on the fuel viscosity, electrochemical reaction rate, and decomposition reaction rate. DBHPFCs were also tested to analyze the effect of operating temperature and operation time on fuel cell performance. The present results can be used as a reference basis to determine operating conditions of DBHPFCs.

탄소 담지체의 결정성에 따른 고분자전해질형 연료전지의 내구성 평가 연구 (Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells)

  • 오형석;;함승주;이창하;김한성
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.142-147
    • /
    • 2009
  • 탄소 담지체의 결정도와 형태가 전기화학적 부식특성과 입자뭉침 현상에 미치는 영향을 평가하기 위해서on-line mass spectrometry와 cyclic voltammogram(CV)법을 사용하였다. 부식실험은 단위 전지형태에서1.4 V의 정전압 조건으로 30분간 시행되었으며 이 때 발생한 $CO_2$ 의 양을 on-line mass spectrometry로 측정하였다. 실험 결과 결정성이 높은 carbon nanofiber (CNF)를 사용한 Pt/CNF 촉매가 결정도가 낮은 담지체를 사용한 상용 Pt/C 촉매보다 $CO_2$ 발생량이 적어 전기화학적 부식에 대한 저항성이 큰 것으로 나타났다. 부식실험 전후의 임피던스와 CV측정에서도 탄소 부식의 영향이 적은 Pt/CNF에서 그 변화가 크지 않은 것으로 관찰되었다. 이러한 결과는 탄소 부식이 고분자 전해질형 연료전지(PEMFC)의 내구성을 결정하는 중요한 요소임을 보여준다. 하지만 탄소 부식이 영향을 미치지 않는 조건에서 실시한 반복 CV 실험 결과 촉매 입자 이동에 의한 뭉침현상은 Pt/CNF에서 더 큰 것으로 나타났다.

The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

  • Choi, Hee Seon;Kim, Keon;Yi, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1305-1311
    • /
    • 2014
  • The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of $LaNiO_3$ phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

공기에 포함된 불순물에 의한 PEMFC 운전 성능 변화 (The Effect of Air Impurities on the PEMFC Performances)

  • 장종현;김이영;한종희;이상엽;조은애;김형준;임태훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.526-529
    • /
    • 2008
  • The effect of air impurities on PEMFC performances were studied using electrochemical analysis, such as OCV monitoring, polarization, constant current operation, and electrochemical impedance spectroscopy. The nitrogen dioxide in air lowered the operation voltage at 1 A/$cm^2$ by 160 mV (10 ppm) and 227 mV (100 ppm), while the carbon monoxide effect was relatively not significant (30 mV at 100 ppm). For both nitrogen dioxide and carbon monoxide, the performances were largely recovered when pure air was provided again. Further study for additional air impurities and simulated air are under progress to provide fundamental data for the design of fuel cell vehicles.

  • PDF

직접메탄올연료전지 시스템에서의 수소이온고분자전해질막의 역할 및 현황 (Current Status and Roles of Proton Exchange Membrane in Direct Methanol Fuel Cell Systems)

  • 김혜경
    • 전기화학회지
    • /
    • 제12권3호
    • /
    • pp.219-233
    • /
    • 2009
  • Mobile devices in the next generation such as camera, cell phone, network, Note PC, etc. require higher power and energy sources due to convergences of various functions. Direct methanol fuel cell (DMFC) has been focused as an attractive power source, but there are critical issues involved in its commercialization with regard to the core technologies of materials, components, and system. The requirements of key technologies are differentiated from applications and fuel supply methods. Here, the roles of the proton-conducting membrane are discussed and the current status of DMFC systems is discussed in terms of proton conductivity, methanol permeability, and water management. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied. These would explain the critical issues of DMFC and the role of membranes for commercialization.