DOI QR코드

DOI QR Code

A Study on Anode Fuel Composition of Direct Borohydride/Hydrogen Peroxide Fuel Cell

직접 수소화붕소나트륨/과산화수소 연료전지의 산화극 연료 조성에 관한 연구

  • LEE, TAE HOON (Department of Smart Manufacturing Engineering, Changwon National University) ;
  • YU, SU SANG (Department of Smart Manufacturing Engineering, Changwon National University) ;
  • OH, TAEK HYUN (Department of Mechanical Engineering, Changwon National University)
  • 이태훈 (창원대학교 스마트제조융합협동과정) ;
  • 유수상 (창원대학교 스마트제조융합협동과정) ;
  • 오택현 (창원대학교 기계공학부)
  • Received : 2021.11.11
  • Accepted : 2021.12.20
  • Published : 2021.12.30

Abstract

This study investigated the effect of anode fuel composition on the performance of direct borohydride/hydrogen peroxide fuel cells (DBHPFCs). The effect of sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations on fuel cell performance was determined through fuel cell tests. Fuel cell performance increased with an increase in the NaBH4 concentration, whereas it decreased with an increase in the NaOH concentration. The anode fuel composition was selected as 10 wt% NaBH4+10 wt% NaOH+80 wt% H2O based on the fuel viscosity, electrochemical reaction rate, and decomposition reaction rate. DBHPFCs were also tested to analyze the effect of operating temperature and operation time on fuel cell performance. The present results can be used as a reference basis to determine operating conditions of DBHPFCs.

Keywords

Acknowledgement

이 논문은 2021-2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구 결과입니다.

References

  1. G. Ju, "Development status of domestic & overseas space exploration & associated technology", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 8, 2016, pp. 741-757, doi: https://doi.org/10.5139/JKSAS.2016.44.8.741.
  2. T. Y. Kim, S. Chang, and H. Heo, "Numerical study on the thermal design of lunar terrain imager system loaded on the Korea pathfinder lunar orbiter", Joural of the Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 4, 2019, pp. 309-318, doi: https://doi.org/10.5139/JKSAS.2019.47.4.309.
  3. T. H. Oh, "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Renew. Energy, Vol. 163, 2021, pp. 930-938, doi: https://doi.org/10.1016/j.renene.2020.09.028.
  4. G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, and D. Carroll, "Direct NaBH4/H2O2 fuel cells", J. Power Sources, Vol. 165, No. 2, 2007, pp. 509-516, doi: https://doi.org/10.1016/j.jpowsour.2006.10.062.
  5. P. S. Khadke, P. Sethuraman, P. Kandasamy, S. Parthasarathi, and A. K. Shukla, "A self-supported direct borohydride-hydrogen peroxide fuel cell system", Energies, Vol. 2, No. 2, 2009, pp. 190-201, doi: https://doi.org/10.3390/en20200190.
  6. B. Sljukic, J. Milikic, D. M. F. Santos, C. A. C. Sequeira, D. Maccio, and A. Saccone, "Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells", J. Power Sources, Vol. 272, 2014, pp. 335-343, doi: https://doi.org/10.1016/j.jpowsour.2014.08.080.
  7. Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, and V. Ramani, "Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells", Nat. Energy, Vol. 4, 2019, pp. 281-289, doi: https://doi.org/10.1038/s41560-019-0330-5.
  8. T. H. Oh, "Effect of cathode conditions on performance of direct borohydride-hydrogen peroxide fuel cell system for space exploration", Renew. Energy, Vol. 178, 2021, pp. 1156-1164, doi: https://doi.org/10.1016/j.renene.2021.06.137.
  9. W. Haijun, W. Cheng, L. Zhixiang, and M. Zongqiang, "Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance", Int. J. Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 2648-2651, doi: https://doi.org/10.1016/j.ijhydene.2009.04.020.
  10. R. Mahmoodi, M. G. Hosseini, and H. Rasouli, "Ehancement of output power density and performance of direct borohydride-hydrogen peroxide fuel cell using Ni-Pd core-shell nanoparticles on polymeric composite supports(rGO-PANI) as novel electrocatalysts", Appl. Catal. B: Environ., Vol. 251, 2019, pp. 37-48, doi: https://doi.org/10.1016/j.apcatb.2019.03.064.
  11. T. H. Oh, B. Jang, and S. Kwon, "Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Int. J. Hydrogen Energy, Vol. 39, No. 13, 2014, pp. 6977-6986, doi: https://doi.org/10.1016/j.ijhydene.2014.02.117.
  12. S. S. Yu and T. H. Oh, "Cathode catalyst of direct borohydride/ hydrogen peroxide fuel cell for space exploration", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 5, 2020, pp. 444-452, doi: https://doi.org/10.7316/KHNES.2020.31.5.444.
  13. T. H. Oh, "Nickel-based catalysts for direct borohydride/hydrogen peroxide fuel cell", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 587-595, doi: https://doi.org/10.7316/KHNES.2020.31.6.587.
  14. Z. P. Li, B. H. Liu, K. Arai, K. Asaba, and S. Suda, "Evaluation of alkaline borohydride solution as the fuel for fuel cell", J. Power Sources, Vol. 126, No. 1-2, 2004, pp. 28-33, doi: https://doi.org/10.1016/j.jpowsour.2003.08.017.
  15. H. B. Dai, Y. Liang, P. Wang, X. D. Yao, T. Rufford, M. Lu, and H. M. Cheng, "High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution", Int. J. Hydrogen Energy, Vol. 33, No. 16, 2008, pp. 4405-4412, doi: https://doi.org/10.1016/j.ijhydene.2008.05.080.
  16. H. Cheng and K. Scott, "Influence of operation conditions on direct borohydride fuel cell performance", J. Power Sources, Vol. 160, No. 1, 2006, pp. 407-412, doi: https://doi.org/10.1016/j.jpowsour.2006.01.097.
  17. J. Wei, X. Wang, Y. Wang, J. Guo, P. He, S. Yang, N. Li, F. Pei, and Y. Wang, "Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells", Energy Fuels, Vol. 23, No. 8, 2009, pp. 4037-4041, doi: https://doi.org/10.1021/ef900186m.
  18. T. H. Oh, B. Jang, and S. Kwon, "Performance evaluation of direct borohydride-hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes", Energy, Vol. 76, 2014, pp. 911-919, doi: https://doi.org/10.1016/j.energy.2014.09.002.