• 제목/요약/키워드: Electrochemical catalyst

검색결과 341건 처리시간 0.026초

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • 제2권2호
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

The Fundamentals of Reduction of UO22+ Ions on a Pt Electrode and Methods for Improving Reduction Current Efficiency

  • Yeon, Jei-Won;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.73-81
    • /
    • 2007
  • This review article considered the electrochemical reduction of uranyl ions on a Pt surface. Specifically, we focussed on the improvement in its reduction current efficiency. First, this article briefly explained the fundamentals of the reduction of uranyl ($UO_2^{2+}$) ions on a Pt surface. Namely, they involved the electrochemical behaviour of uranium species, and electrochemical cell configurations for the reduction of $UO_2^{2+}$ ions. In addition, the effects of adsorbed hydrogen atoms were investigated on the reduction of $UO_2^{2+}$ ions. Finally, this article presented the methods for improving current efficiency of the reduction of $UO_2^{2+}$ ions on a Pt surface. Three different kinds of methods are introduced, which include electrochemical surface treatments of Pt electrode involving hydrogenation and anodisation, the use of catalyst poisons, and formation of thin mercury film on a Pt electrode. Moreover, this article provided some clues about how hydrogenation and catalyst poisons work on the reduction of $UO_2^{2+}$ ions.

Improvement in Catalytic Activity of Ag Catalyst via Simple Mixing with Carbon

  • Choun, Myounghoon;Baek, Ji Yun;Eom, Taehyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.331-335
    • /
    • 2019
  • In this study we investigate catalytic activity and selectivity of mixture of Ag and ketjenblack according to their ratios by product analysis and electrochemical experiments, such as cyclic voltammetry, linear sweep voltammetry and chronoamperometry. We reveal that catalytic activity toward CO2 reduction to CO is improved by simple mixing Ag nanoparticle and ketjenblack because addition of ketjenblack suppresses aggregation of Ag nanoparticles and brings increase in electrochemical active surface area. However, excess amount of ketjenblack rather inhibit the CO2 reduction to CO. These observations provide clues to develop highly active Ag catalyst or electrode toward electrochemical reduction of CO2.

전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조 (Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime)

  • 김다은;유재민;이용호;박대원
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

과산화수소 분해반응을 이용한 Pt계 촉매의 인산피독 특성 평가 방법 (The Analysis Method for Evaluation of Phosphoric Acid Poisioning of Pt Based Catalyst by Using Hydrogen Peroxide Decomposition Reaction)

  • 박정진;양승원;정용진;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.669-674
    • /
    • 2017
  • In this study, the novel electrochemical and colorimetric analysis methods are suggested to estimate the degree of phosphoric acid ion poisoning on Pt based catalyst surface and to confirm the possibility of replacing the expensive and long time consumed conventional methods. As the ways, the electrochemical half cell tests such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are used and the change in chemical behavior by absorption of the phosphoric acid ion on Pt based catalyst surface and hydrogen peroxide decomposition reaction are successfully recognized by colorimetric measurements. Conclusively, it is proved that the new methods show superior sensitivity for identifying the degree of phosphoric acid poisoned on Pt based catalyst.

Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata

  • Park Sun Mi;Sang Byung In;Park Dae Won;Park Doo Hyun
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.451-455
    • /
    • 2005
  • In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of $NAD^+$ to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and $NAD^+$ was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of $NAD^+$ to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). $NAD^+$ can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for $NAD^+/NADH$ recycling

Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design

  • Taejung Lim;Jinjong Kim;Sang Hoon Joo
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.105-119
    • /
    • 2023
  • The electrochemical chlorine evolution reaction (CER) is an important electrochemical reaction and has been widely used in chlor-alkali electrolysis, on-site generation of ClO-, and Cl2-mediated electrosynthesis. Although precious metal-based mixed metal oxides (MMOs) have been used as CER catalysts for more than half a century, they intrinsically suffer from a selectivity problem between the CER and parasitic oxygen evolution reaction (OER). Hence, the design of selective CER electrocatalysts is critically important. In this review, we provide an overview of the fundamental issues related to the electrocatalysis of the CER and design strategies for selective CER electrocatalysts. We present experimental and theoretical methods for assessing the active sites of MMO catalysts and the origin of the scaling relationship between the CER and the OER. We discuss kinetic analysis methods to understand the kinetics and mechanisms of CER. Next, we summarize the design strategies for new CER electrocatalysts that can enhance the reactivity of MMO-based catalysts and overcome their scaling relationship, which include the doping of MMO catalysts with foreign metals and the development of non-precious metal-based catalysts and atomically dispersed metal catalysts.

Hydrothermally Synthesized TiO2 Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries

  • Kang, Seung Ho;Song, Kyeongse;Jung, Jaepyeong;Jo, Mi Ru;Khan, M. Alam;Kang, Yong-Mook
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권2호
    • /
    • pp.45-48
    • /
    • 2014
  • $TiO_2$ nanoparticles (NPs) with a diameter of 100 nm were synthesized by a simple hydrothermal route at $220^{\circ}C$ and then processed for a possible alternate cathode catalyst material in the lithium-oxygen batteries. It was found that when $TiO_2$ nanoparticles were utilized as cathodes, substantial improvements in the discharge capacity, cycle ability, rate capability and low overpotential were observed. This can be attributed to its high catalytic activity and large surface area.

Hydrothermally Synthesized TiO2 Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries

  • Kang, Seung Ho;Song, Kyeongse;Jung, Jaepyeong;Jo, Mi Ru;Khan, M. Alam;Kang, Yong-Mook
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권4호
    • /
    • pp.105-108
    • /
    • 2014
  • $TiO_2$ nanoparticles (NPs) with a diameter of 100 nm were synthesized by a simple hydrothermal route at $220^{\circ}C$ and then processed for a possible alternate cathode catalyst material in the lithium-oxygen batteries. It was found that when $TiO_2$ nanoparticles were utilized as cathodes, substantial improvements in the discharge capacity, cycle ability, rate capability and low overpotential were observed. This can be attributed to its high catalytic activity and large surface area.

Electrocatalyst for the Oxygen Reduction Reaction: from the Nanoscale to the Macroscale

  • Chung, Dong Young;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권3호
    • /
    • pp.65-72
    • /
    • 2014
  • The use of nanoscale electrocatalysts is a promising strategy for achieving high catalyst activity due to their large surface area. However, catalyst activity is not directly correlated to particle size. To understand this discrepancy, many studies have been conducted, but a full understanding has still not been achieved, despite the importance of particle size effects in designing an active catalyst. In this review, we focus on the discussion of particle size effects on the oxygen reduction reaction, and also discussed the nanoscale design beyond the nanoparticle to the meso and macroscale design.