DOI QR코드

DOI QR Code

Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design

  • Taejung Lim (Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jinjong Kim (Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sang Hoon Joo (Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2022.12.12
  • Accepted : 2023.01.23
  • Published : 2023.05.28

Abstract

The electrochemical chlorine evolution reaction (CER) is an important electrochemical reaction and has been widely used in chlor-alkali electrolysis, on-site generation of ClO-, and Cl2-mediated electrosynthesis. Although precious metal-based mixed metal oxides (MMOs) have been used as CER catalysts for more than half a century, they intrinsically suffer from a selectivity problem between the CER and parasitic oxygen evolution reaction (OER). Hence, the design of selective CER electrocatalysts is critically important. In this review, we provide an overview of the fundamental issues related to the electrocatalysis of the CER and design strategies for selective CER electrocatalysts. We present experimental and theoretical methods for assessing the active sites of MMO catalysts and the origin of the scaling relationship between the CER and the OER. We discuss kinetic analysis methods to understand the kinetics and mechanisms of CER. Next, we summarize the design strategies for new CER electrocatalysts that can enhance the reactivity of MMO-based catalysts and overcome their scaling relationship, which include the doping of MMO catalysts with foreign metals and the development of non-precious metal-based catalysts and atomically dispersed metal catalysts.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2019M3E6A1064521, NRF-2019M3D1A1079306, NRF-2019M1A2A2065614, and NRF-2021R1A2C2007495).

References

  1. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, Oxford, 1997.
  2. P. Schmittinger, T. Florkiewicz, L. C. Curlin, B. Luke, R. Scannell, T. Navin, E. Zelfel, and R. Bartsch, Chlorine, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2012.
  3. World Chlorine Council, https://worldchlorine.org/wpcontent/uploads/2020/09/2020-WCC-SustainabilityReport.pdf (accessed 15 August 2022).
  4. T. Brinkmann, G. G. Santonja, F. Schorcht, S. Roudier, L. D. Sancho, Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali, Publications Office of the European Union, Luxembourg, 2014.
  5. P. C. S. Hayfield, Platinum Metals Rev., 1998, 42(2), 46-55. https://doi.org/10.1595/003214098X4224655
  6. P. C. S. Hayfield, Platinum Metals Rev., 1998, 42(3), 116-122. https://doi.org/10.1595/003214098X423116122
  7. S. Trasatti, Electrochim. Acta, 2000, 45(15-16), 2377-2385. https://doi.org/10.1016/S0013-4686(00)00338-8
  8. R. K. B. Karlsson and A. Cornell, Chem. Rev., 2016, 116(5), 2982-3028. https://doi.org/10.1021/acs.chemrev.5b00389
  9. K. S. Exner, T. Lim, and S. H. Joo, Curr. Opin. Electrochem., 2022, 34, 100979.
  10. S. Dresp, F. Dionigi, M. Klingenhof, and P. Strasser, ACS Energy Lett., 2019, 4(4), 933-942. https://doi.org/10.1021/acsenergylett.9b00220
  11. W. Tong, M. Forster, F. Dionigi, S. Dresp, R. S. Erami, P. Strasser, A. J. Cowan, and P. Farras, Nat. Energy, 2020, 5, 367-377. https://doi.org/10.1038/s41560-020-0550-8
  12. H. Dong, W. Yu, and M. R. Hoffmann, J. Phys. Chem. C, 2021, 125(38), 20745-20761. https://doi.org/10.1021/acs.jpcc.1c05671
  13. M. Chung, K. Jin, J. S. Zeng, and K. Manthiram, ACS Catal., 2020, 10(23), 14015-14023. https://doi.org/10.1021/acscatal.0c02810
  14. International Maritime Organization (IMO), https:// www.imo.org/en/About/Conventions/Pages/Default.aspx (accessed 15 August 2022).
  15. Y. Yang, J. Shin, J. T. Jasper, and M. R. Hoffmann, Environ. Sci. Technol., 2016, 50(16), 8780-8787. https://doi.org/10.1021/acs.est.6b00688
  16. A. Kumar, K. R. Phillips, G. P. Thiel, U. Schroder, and J. H. Lienhard, Nat. Catal., 2019, 2, 106-113. https://doi.org/10.1038/s41929-018-0218-y
  17. S. Stein, O. Sivan, Y. Yechieli, and R. Kasher, Water Res., 2021, 188, 116508.
  18. S. M. Shalaby, S. W. Sharshir, A. E. Kabeel, A. W. Kandeal, H. F. Abosheiasha, M. Abdelgaied, M. H. Hamed, and N. Yang, Energy Convers. Manag., 2022, 251, 114971.
  19. M. Metikos-Hukovic, A. Reseti'c, and V. Gvozdic, Electrochim. Acta, 1995, 40(11), 1777-1779. https://doi.org/10.1016/0013-4686(95)00243-8
  20. Y. Wang, Y. Liu, D. Wiley, S. Zhao, and Z. Tang, J. Mater. Chem. A, 2021, 9, 18974-18993. https://doi.org/10.1039/D1TA02745J
  21. J. Jirkovsky, H. Hoffmannova, M. Klementova, and P. Krtil, J. Electrochem. Soc., 2006, 153, E111.
  22. A. R. Zeradjanin, F. L. Mantia, J. Masa, and W. Schuhmann, Electrochim. Acta, 2012, 82, 408-414. https://doi.org/10.1016/j.electacta.2012.04.101
  23. N. Menzel, E. Ortel, K. Mette, R. Kraehnert, and P. Strasser, ACS Catal., 2013, 3(6), 1324-1333. https://doi.org/10.1021/cs4000238
  24. D. Shao, W. Yan, L. Cao, X. Li, and H. Xu, J. Hazard. Mater., 2014, 267, 238-244. https://doi.org/10.1016/j.jhazmat.2013.12.064
  25. M. M. Alavijeh, S. Habibzadeh, K. Roohi, F. Keivanimehr, L. Naji, and M. R. Ganjali, Chem. Eng. J., 2021, 421, 127785.
  26. I. A. Moreno-Hernandez, B. S. Brunschwig, and N. S. Lewis, Energy Environ. Sci., 2019, 12, 1241-1248. https://doi.org/10.1039/C8EE03676D
  27. H. Ha, K. Jin, S. Park, K.-G. Lee, K. H. Cho, H. Seo, H.-Y. Ahn, Y. H. Lee, and K. T. Nam, J. Phys. Chem. Lett., 2019, 10(6), 1226-1233. https://doi.org/10.1021/acs.jpclett.9b00547
  28. T. Lim, G. Y. Jung, J. H. Kim, S. O. Park, J. Park, Y.-T. Kim, S. J. Kang, H. Y. Jeong, S. K. Kwak, and S. H. Joo, Nat. Commun., 2020, 11, 412.
  29. T. Lim, J. H. Kim, J. Kim, D. S. Baek, T. J. Shin, H. Y. Jeong, K.-S. Lee, K. S. Exner, and S. H. Joo, ACS Catal., 2021, 11(19), 12232-12246. https://doi.org/10.1021/acscatal.1c03893
  30. D. Wintrich, D. Ohl, S. Barwe, A. Ganassin, S. Moller, T. Tarnev, A. Botz, A. Ruff, J. Clausmeyer, J. Masa, and W. Schuhmann, ChemElectroChem, 2019, 6(12), 3108-3112. https://doi.org/10.1002/celc.201900784
  31. I. Garcia-Herrero, M. Margallo, R. Onandia, R. Aldaco, and A. Irabien, Clean Techn. Environ. Policy, 2018, 20(2), 229-242. https://doi.org/10.1007/s10098-017-1397-y
  32. A. Kraft, Platinum Metals Rev., 2008, 52(3), 177-185. https://doi.org/10.1595/147106708X329273
  33. Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, J. Appl. Electrochem., 2010, 40, 1789-1795. https://doi.org/10.1007/s10800-010-0137-3
  34. S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros, and K. J. J. Mayrhofer, ChemCatChem, 2014, 6(8), 2219-2223. https://doi.org/10.1002/cctc.201402194
  35. N. Danilovic, R. Subbaraman, K.-C. Chang, S. H. Chang, Y. J. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y.-T. Kim, D. Myers, V. R. Stamenkovic, and N. M. Markovic, J. Phys. Chem. Lett., 2014, 5(14), 2474-2478. https://doi.org/10.1021/jz501061n
  36. A. R. Zeradjanin, N. Menzel, W. Schuhmann, and P. Strasser, Phys. Chem. Chem. Phys., 2014, 16(27), 13741-13747. https://doi.org/10.1039/C4CP00896K
  37. A. R. Zeradjanin, T. Schilling, S. Seisel, M. Bron, and W. Schuhmann, Anal. Chem., 2011, 83(20), 7645-7650. https://doi.org/10.1021/ac200677g
  38. R. Chen, V. Trieu, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann, and R. Hempelmann, Phys. Chem. Chem. Phys., 2012, 14, 7392-7399. https://doi.org/10.1039/c2cp41163f
  39. A. R. Zeradjanin, N. Menzel, P. Strasser, and W. Schuhmann, ChemSusChem, 2012, 5(10), 1897-1904. https://doi.org/10.1002/cssc.201200193
  40. K. S. Exner and H. Over, Acc. Chem. Res., 2017, 50(5), 1240-1247. https://doi.org/10.1021/acs.accounts.7b00077
  41. H. Over, Chem. Rev., 2012, 112(6), 3356-3426. https://doi.org/10.1021/cr200247n
  42. K. S. Exner, J. Anton, T. Jacob, and H. Over, Electrochim. Acta, 2014, 120, 460-466. https://doi.org/10.1016/j.electacta.2013.11.027
  43. K. S. Exner, J. Anton, T. Jacob, and H. Over, Electrocatalysis, 2015, 6, 163-172. https://doi.org/10.1007/s12678-014-0220-3
  44. H. A. Hansen, I. C. Man, F. Studt, F. Abild-Pedersen, T. Bligaard, and J. Rossmeisl, Phys. Chem. Chem. Phys., 2010, 12, 283-290. https://doi.org/10.1039/B917459A
  45. K. S. Exner, ChemElectroChem, 2019, 6(13), 3401-3409. https://doi.org/10.1002/celc.201900834
  46. H. A. Hansen, V. Viswanathan, and J. K. Norskov, J. Phys. Chem. C, 2014, 118(13), 6706-6718. https://doi.org/10.1021/jp4100608
  47. J. H. Kim, Y.-T. Kim, and S. H. Joo, Curr. Opin. Electrochem., 2020, 21, 109-116. https://doi.org/10.1016/j.coelec.2020.01.007
  48. H. B. Beer, British Patent 1,195,871, 1967.
  49. K. S. Exner, J. Anton, T. Jacob, and H. Over, Angew. Chem., Int. Ed., 2014, 53(41), 11032-11035. https://doi.org/10.1002/anie.201406112
  50. C. E. Finke, S. T. Omelchenko, J. T. Jasper, M. F. Lichterman, C. G. Read, N. S. Lewis, and M. R. Hoffmann, Energy Environ. Sci., 2019, 12, 358-365. https://doi.org/10.1039/C8EE02351D
  51. V. Sumaria, D. Krishnamurthy, and V. Viswanathan, ACS Catal., 2018, 8(10), 9034-9042. https://doi.org/10.1021/acscatal.8b01432
  52. K. S. Exner, Phys. Chem. Chem. Phys., 2020, 22, 22451-22458. https://doi.org/10.1039/D0CP03667F
  53. S. Trasatti, Electrochim. Acta, 1987, 32(3), 369-382. https://doi.org/10.1016/0013-4686(87)85001-6
  54. B. E. Conway and B. V. Tilak, Adv. Catal., 1992, 38, 1-147. https://doi.org/10.1016/S0360-0564(08)60006-1
  55. L. I. Krishtalik, Electrochim. Acta, 1981, 26(3), 329-337. https://doi.org/10.1016/0013-4686(81)85019-0
  56. I. Sohrabnejad-Eskan, A. Goryachev, K. S. Exner, L. A. Kibler, E. J. M. Hensen, J. P. Hofmann, and H. Over, ACS Catal., 2017, 7(4), 2403-2411. https://doi.org/10.1021/acscatal.6b03415
  57. V. Consonni, S. Trasatti, F. Pollak, and W. E. O'Grady, J. Electroanal Chem., 1987, 228(1-2), 393-406. https://doi.org/10.1016/0022-0728(87)80119-5
  58. G. Djega-Mariadassou and M. Boudart, J. Catal., 2003, 216(1-2), 89-97. https://doi.org/10.1016/S0021-9517(02)00099-4
  59. B. V. Tilak and B. E. Conway, Electrochim. Acta, 1992, 37(1), 51-63. https://doi.org/10.1016/0013-4686(92)80011-A
  60. S. Ferro and A. D. Battisti, J. Phys. Chem. B, 2002, 106(9), 2249-2254. https://doi.org/10.1021/jp012195i
  61. B. V. Tilak and C.-P. Chen, J. Appl. Electrochem., 1993, 23, 631-640. https://doi.org/10.1007/BF00721955
  62. R. Guidelli, R. G. Compton, J. M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, and S. Trasatti, Pure Appl. Chem., 2014, 86(2), 245-258. https://doi.org/10.1515/pac-2014-5026
  63. J. O'M Bockris and Z. Nagy, J. Chem. Educ. 1973, 50(12), 839-843. https://doi.org/10.1021/ed050p839
  64. D.-Y. Kuo, H. Paik, J. N. Nelson, K. M. Shen, D. G. Schlom, and J. Suntivich, J. Chem. Phys., 2019, 150(4), 041726.
  65. T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, Sci. Rep., 2015, 5, 13801.
  66. V. I. Eberil', N. S. Fedotova, E. A. Novikov, and A. F. Mazanko, Russ. J. Electrochem., 2000, 36, 1296-1302. https://doi.org/10.1023/A:1026603714489
  67. M. V. Makarova, J. Jirkovsky, M. Klementova, I. Jirka, K. Maocunova, and P. Krtil, Electrochim. Acta, 2008, 53(5), 2656-2664. https://doi.org/10.1016/j.electacta.2007.01.084
  68. R. Boggio, A. Carugati, G. Lodi, and S. Trasatti, J. Appl. Electrochem., 1985, 15, 335-349. https://doi.org/10.1007/BF00615986
  69. B. V. Tilak, K. Tari, and C. L. Hoover, J. Electrochem. Soc., 1988, 135, 1386.
  70. K. Macounova, M. Makarova, J. Jirkovsky, J. Franc, and P. Krtil, Electrochim. Acta, 2008, 53(21), 6126-6134. https://doi.org/10.1016/j.electacta.2007.11.014
  71. D. F. Abbott, V. Petrykin, M. Okube, Z. Bastl, S. Mukerjee, and P. Krtil, J. Electrochem. Soc., 2015, 162(1), H23-H31. https://doi.org/10.1149/2.0541501jes
  72. M. Spasojevic, L. Ribic-Zelenovic, and P. Spasojevic, Ceram. Int., 2012, 38(7), 5827-5833. https://doi.org/10.1016/j.ceramint.2012.04.032
  73. K. Macounova, M. Makarova, J. Franc, J. Jirkovsky, and P. Krtil, Electrochem. Solid-State Lett., 2008, 11(12), F27-F29. https://doi.org/10.1149/1.2978963
  74. V. Petrykin, K. Macounova, O. A. Shlyakhtin, and P. Krtil, Angew. Chem., Int. Ed., 2010, 49(28), 4813-4815. https://doi.org/10.1002/anie.200907128
  75. R. E. Palma-Goyes, J. Vazquez-Arenas, C. Ostos, A. Manzo-Robledo, I. Romero-Ibarra, J. A. Calderon, and I. Gonzalez, Electrochim. Acta, 2018, 275, 265-274. https://doi.org/10.1016/j.electacta.2018.04.114
  76. K. Kishor, S. Saha, A. Parashtekar, and R. G. S. Pala, J. Electrochem. Soc., 2018, 165(15), J3276-J3280. https://doi.org/10.1149/2.0361815jes
  77. H. W. Lim, D. K. Cho, J. H. Park, S. G. Ji, Y. J. Ahn, J. Y. Kim, and C. W. Lee, ACS Catal., 2021, 11(20), 12423-12432. https://doi.org/10.1021/acscatal.1c03653
  78. Y. Surendranath, M. W. Kanan, and D. G. Nocera, J. Am. Chem. Soc., 2010, 132(46), 16501-16509. https://doi.org/10.1021/ja106102b
  79. X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Acc. Chem. Res., 2013, 46(8), 1740-1748. https://doi.org/10.1021/ar300361m
  80. C. Zhu, S. Fu, Q. Shi, D. Du, and Y. Lin, Angew. Chem., Int. Ed., 2017, 56(45), 13944-13960. https://doi.org/10.1002/anie.201703864
  81. A. Wang, J. Li, and T. Zhang, Nat. Rev. Chem., 2018, 2, 65-81. https://doi.org/10.1038/s41570-018-0010-1
  82. S. Mitchell, E. Vorobyeva, and J. Perez-Ramirez, Angew. Chem., Int. Ed., 2018, 57(47), 15316-15329. https://doi.org/10.1002/anie.201806936
  83. S. Ji, Y. Chen, X. Wang, Z. Zhang, S. Wang, and Y. Li, Chem. Rev., 2020, 120(21), 11900-11955. https://doi.org/10.1021/acs.chemrev.9b00818
  84. J. H. Kim, Y. J. Sa, T. Lim, J. Woo, and S. H. Joo, Acc. Chem. Res., 2022, 55(18), 2672-2684. https://doi.org/10.1021/acs.accounts.2c00409
  85. J. Liu, J. J. Hinsch, H. Yin, P. Liu, H. Zhao, and Y. Wang, J. Electroanal. Chem., 2022, 907, 116071.
  86. J. Liu, J. J. Hinsch, H. Yin, P. Liu, H. Zhao, and Y. Wang, J. Phys. Chem. C, 2022, 126(16), 7066-7075. https://doi.org/10.1021/acs.jpcc.2c01593
  87. L. Rossner and M. Armbruster, ACS Catal., 2019, 9(3), 2018-2062. https://doi.org/10.1021/acscatal.8b04566
  88. Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I. G. Kevrekidis, Z. J. Ren, J. Greeley, G. Wang, A. Anapolsky, and L. Hu, Science, 2022, 376(6589), eabn3103.