• Title/Summary/Keyword: Electrochemical capacitance

Search Result 363, Processing Time 0.03 seconds

Electrochemical Capacitance of Activated Carbons Regenerated using Thermal and Chemical Activation

  • Park, Jung Eun;Lee, Gi Bbum;Hwang, Sang Youp
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2021
  • Spent activated carbons (SACs) collected from a water treatment plant were regenerated and then adopted as electrochemical material in capacitors. The SACs used in this study were regenerated via two steps, namely thermal and chemical activation. However, during the activation process, the adsorbates were converted into ashes, which caused pore blockage and decreased specific surface area. The regenerated SACs were washed with acid solutions with different levels of acidity (strong: HCl, mild: H3PO4, and weak: H2O2) to remove the ashes. The regenerated SACs washed with HCl exhibited the highest specific surface area, although their capacitance was not the highest. Conversely, the specific surface area of regenerated SACs washed using H3PO4 was slightly lower than that of HCl, but exhibited higher capacitance and electrochemical stability. Although the strong acid removed the generated ashes in the pores efficiently, it could adversely affect their structural stability, which would lead to lower capacitance.

Electrochemical Characteristics of Pseudocapacitor Using Aqueous Polymeric Gel Electrolyte (수용성 폴리머 겔 전헤액을 사용한 Pseudocapacitor의 전기화학적 특성)

  • Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.158-160
    • /
    • 2003
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400 F/g (specific capacitance) and good cycleability. But, it had serious demerits of low voltage range under 0.5 V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. We report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over 250 F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100 F/g capacitance. This capacitance was only electric double layer capacitance of active surface area. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Itis very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

Complex Capacitance Analysis of Impedance Data and its Applications (임피던스 복소캐패시턴스 분석법의 이론 및 응용)

  • Jang, Jong-Hyun;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 2010
  • In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

The Effective Capacitance of a Constant Phase Element with Resistors in Series

  • Byoung-Yong, Chang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.479-485
    • /
    • 2022
  • The power of energy storage devices is characterized by capacitance and the internal resistance. The capacitance is measured on an assumption that the charges are stored at the electrode interface and the electric double layer behaves like an ideal capacitor. However, in most cases, the electric double layer is not ideal so a constant phase element (CPE) is used instead of a capacitor to describe the practical observations. Nevertheless, another problem with the use of the CPE is that CPE does not give capacitance directly. Fortunately, a few methods were suggested to evaluate the effective capacitance in the literature. However, those methods may not be suitable for supercapacitors which are modeled as an equivalent circuit of a CPE and resistor connected in series because the time constant of the equivalent circuit is not clearly studied. In this report, in order to study the time constant of the CPE and find its equivalent capacitor, AC and DC methods are utilized in a complementary manner. As a result, the time constants in the AC and DC domains are compared with digital simulation and a proper equation is presented to calculate the effective capacitance of a supercapacitor, which is extended to an electrochemical system where faradaic and ohmic processes are accompanied by imperfect charge accumulation process.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

A Hybrid Electrochemical Capacitor Using Aqueous Electrolyte (수용성 전해액을 사용하는 하이브리드 전기화학 축전기)

  • Kim, Jong-Huy;Jin, Chang-Soo;Shin, Kyoung-Hee;Lee, Mi-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.153-157
    • /
    • 2003
  • A hybrid electrochemical capacitor having both characteristics of electric double layer capacitance and pseudo-capacitance was studied throughout cell tests. Asymmetric electrodes with $Ni(OH)_2/activated$ carbon based positive electrode and activated carbon based negative electrode were used in preparing test cells of $5\times5cm^2$. Cyclic voltammetry measurements and impedance measurements were conducted to understand electrochemical behavior of each electrode. To find an optimal mass ratio of negative to positive electrode, charge-discharge cycle tests were also performed.

Electrochemical Characteristics of Highly Porous Carbon Prepared by Chemical Activation Method for EDLC (화학적 활성법으로 제조된 EDLC용 고다공성 탄소전극의 전기화학 특성)

  • Eo, Soo-Mi;Kim, Han-Joo;Oh, Seung-Mo;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2010-2012
    • /
    • 2005
  • Activated carbon was activated with chemical treatment to attain high surface area with porous structure. We have been considered activated carbon is the ideal material for high voltage electric double layer capacitor due to their high specific surface area, good conductivity and chemical stability. In this study we found that increase in electrochemical capacitance due to activated carbon. Also chemically activated carbon and water treatment have resulted larger capacitance and also exhibits better electrochemical behavior, and is about 15% more than in untreated state. The structural change in activated carbon through chemical treatment activation was investigated by using SEM and XRD. In this study, the dependence of the activation behavior with KOH in the micro structure of host materials will be discussed. Furthermore, the relation to the electric double layer capacitance, especially the specific capacitance per unit area, is also discussed.

  • PDF

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors

  • Hong, Jeehoon;Hwang, Byunghyun;Lee, Junghye;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.

Optimization of Capacitance Balance for a Hybrid Supercapacitor Consisted of LiMn2O4/AC as a Positive and AC Negative Electrode

  • Cho, Min-Young;Park, Sun-Min;Lee, Jae-Won;Roh, Kwang-Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.152-156
    • /
    • 2011
  • A hybrid supercapacitor is fabricated using a composite material from $LiMn_2O_4$ (LMO) and activated carbon (AC) as the positive electrode and AC as the negative electrode to form the (LMO + AC)/AC system. Volume ratio (positive : negative) of electrodes is controlled to investigate of the power and energy balance. The (LMO + AC)/AC system shows better performances than the LMO/AC system. Especially, electrochemical impedance spectra, rate charge.discharge and cycle performance testing show that the (LMO + AC)/AC system have an outstanding electrochemical performance at volume ratios of (LMO + AC)/AC = 1 : 1.7 and 1 : 2. Electric double layer capacitor (EDLC) capacitance between AC of the positive electrode and AC of the negative electrode improves power density without loss of capacitance. Stable capacitance is achieved by lowering the positive electrode resistance and balancing the energy and power densities between the positive and negative electrodes by the addition of AC to the positive electrode at high current density.

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.