• 제목/요약/키워드: Electrochemical Property

검색결과 384건 처리시간 0.028초

$LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성 (The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg))

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

$LiMn_{2-y}M_{y}O_{4}$ 정극 활물질의 전기화학적 특성. III. $LiMn_{2-y}M_{y}O_{4}$의 충방전 특성과 AC 임피던스의 온도 의존성 (The Electrochemical Characterization of $LiMn_{2-y}M_{y}O_{4}$ Cathode Material. III. The Effect of Temperature on the Charge-discharge Property and AC Impedance of $LiMn_{2-y}M_{y}O_{4}$)

  • 정인성;구할본;김종욱;손명모;이헌수
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.663-669
    • /
    • 2001
  • Spinel LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ power was synthesized with solid-state method by calcining the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO at 80$0^{\circ}C$ for 36 h in an air atmosphere. To investigate the effect of temperature on he cycle performance of cathode material during cycling, charge-discharge experiments and ac impedance measurement were performed. Initial discharge capacity was gradually increased with the increase of charge-discharge temperature. Discharge capacity at high temperature was suddenly decreased during cycling. On the other hand, discharge capacity at low temperature was almost constant during cycling. It confirmed that Mn dissolution is serious at high temperature than at low temperature. LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best capacity and stability at room temperature.ure.ure.

  • PDF

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

고온, 고압 알칼리 수용액에서의 Alloy 600 산화막 특성에 미치는 납 농도 영향 (Effect of Lead Concentration on Surface Oxide Formed on Alloy 600 in High Temperature and High Pressure Alkaline Solutions)

  • 김동진;김현욱;문병학;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.96-102
    • /
    • 2012
  • 0.1 M NaOH 용액에 PbO첨가양이 증가함에 따라 Alloy 600에 형성되는 산화막의 부동태 피막 특성이 열화되었다. 또한 뚜렷한 2중층 구조의 산화막이 점차 사라지고, 산화막내 존재하는 납의 양이 증가하였다. 산화막 내부 납의 양이 증가함에 따라 산화막 내부 니켈의 결핍이 점차 커졌다. 납에 의해 산화막의 부동태 특성이 약화됨에 따라, 응력부식균열 저항성 또한 급감하였을 것으로 판단된다.

AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가 (Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment)

  • 이성열;박동현;원종필;김윤해;이명훈;문경만;정재현
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가 (Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings)

  • 박윤환;남상용
    • 멤브레인
    • /
    • 제27권1호
    • /
    • pp.92-103
    • /
    • 2017
  • 본 연구에서는 리튬이온전지용 친수화된 세퍼레이터의 전기화학적 성능에 대한 연구를 진행하였다. 리튬이온전지용 분리막으로 사용되는 폴리올레핀 소재는 소수성이고, 카보네이트 계열의 유기용매를 사용하는 전해액은 친수성을 가진다. 따라서 리튬이온전지는 수계전해액을 사용하기 때문에 폴리올레핀계 분리막에 다양한 친수성 고분자를 도입하여 친수화 처리하였다. 코팅된 세퍼레이터의 변화를 평가하기 위해, 표면 관찰, 코팅시간에 따른 친수화도, 다공성, 젖음성에 대한 특성평가를 수행하였다. 최종적으로 리튬이온이 코팅된 세퍼레이터의 저항과., 이온전도도를 측정하여 리튬이온전지 성능평가를 진행하였다. PMVE로 코팅한 세퍼레이터의 친수화 정도가 우수하며, 세퍼레이터의 기공이 잘 유지되어 우수한 이온전도도를 나타냄으로써 이차전지 배터리에 적용을 위한 잠재성을 가짐을 확인하였다.

Synthesis of Polyamine Grafted Chitosan Copolymer and Evaluation of Its Corrosion Inhibition Performance

  • Li, Heping;Li, Hui;Liu, Yi;Huang, Xiaohua
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.142-147
    • /
    • 2015
  • Two new chitosan derivatives, polyamine grafted chitosan copolymers have been synthesized for corrosion protection of carbon steel in acidic medium. First, methyl acrylate graft chitosan copolymer (CS-MAA) was prepared by the reaction of chitosan (CS) and methyl acrylate (MAA) via the Michael addition reaction. Then, CS-MAA was reacted with ethylene diamine (EN) and triethylene tetramine (TN) respectively to synthesize ethylene diamine grafted chitosan copolymer (CS-MAA-EN) and triethylene tetramine grafted chitosan copolymer (CS-MAA-TN), and the structures were characterized by Fourier-transform infrared spectroscopy (FT-IR). At last, the corrosion inhibition activities on Q235 carbon steel were investigated by using gravimetric measurements, metallographic microscope, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The compounds CS-MAA-EN and CS-MAA-TN show an appreciable corrosion inhibition property against corrosion of Q235 carbon steel in 5% HCl solution at $25^{\circ}C$. It has been observed that CS-MAA-EN shows greater corrosion inhibition efficiency than CS-MAA-TN. The inhibition efficiency of CS-MAA-EN was close to 90% when the mass fraction concentration was 0.2%~0.3%; the inhibition efficiency of CS-MAA-TN was close to 85% when the mass fraction concentration was 0.02%. The present work provided very promising results in the preparation of green corrosion inhibitors.

Effect of Niobium on the Electronic Properties of Passive Films on Zirconium Alloys

  • Kim, Bo Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2003
  • The effects of Niobium on the structure and properties(especially electric properties) of passive film of Zirconium alloys in pH 8.5 buffer solution are examined by the photo-electrochemical analysis. For Zr-xNb alloys (x = 0, 0.45, 1.5, 2.5 wt%), photocurrent began to increase at the incident energy of 3.5 ~ 3.7 eV and exhibited the $1^{st}$ peak at 4.3 eV and the $2^{nd}$ peak at 5.7 eV. From $(i_{ph}hv)^{1/2}$ vs. hv plot, indirect band gap energies $E_g{^1}$= 3.01~3.47 eV, $E_g{^2}$= 4.44~4.91 eV were obtained. With increasing Nb content, the relative photocurrent intensity of $1^{st}$ peak significantly increased. Compared with photocurrent spectrum of thermal oxide of Zr-2.5Nb, It was revealed that $1^{st}$ peak in photocurrent spectrum for the passive film formed on Zr-Nb alloy was generated by two types of electron transitions; the one caused by hydrous $ZrO_2$ and the other created by Nb. Two electron transition sources were overlapped over the same range of incident photon energy. In the photocurrent spectrum for passive film formed on Zr-2.5Nb alloy in which Nb is dissolved into matrix by quenching, the relative photocurrent intensity of $1^{st}$ peak increased, which implies that dissolved Nb act as another electron transition source.

Mg 치환된 $LiMg_xMn_{2-x}O_4$정극 활물질의 전기화학적 특성 (The electrochemical property of $LiMg_xMn_{2-x}O_4$cathode materials substituted Mg)

  • 정인성;박계춘;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 1999
  • To improve the cycle performance LiM $n_2$ $O_4$as the cathode of 4V class lithium secondary batteries, the cathode properties of the cubic spinel phases LiM $g_{x}$ /M $n_{2-x}$/ $O_4$ synthesized at 80$0^{\circ}C$ were examined. All cathode material showed spinel phase based on cubic phase in X-ray diffraction however. other peaks gradually exhibited and became intense with the increase of x value in LiM $g_{x}$ /M $n_{2-x}$/ $O_4$. The cycle performance of the LiM $g_{x}$ /M $n_{2-x}$/ $O_4$was improved by the substitution of $Mg^{2+}$ for M $n^{3+}$ in the octahedral sites. Specially LiM $g_{0.1}$/M $n_{1.9}$ / $O_4$cathode materials showed the charge and discharge capacity of about 130~125mAh/g at first cycle and about 105mAh/g after 50th cycle. It is excellent than that of pure LiM $n_{2}$/ $O_4$ which 125mAh/g at first cycle 70mAh/g at 50th. In addition cathode material prepared at 80$0^{\circ}C$ for 24hr and 42hr in the charge and discharge capapcity as well as the cycle stability.ility.y.y.

  • PDF

리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구 (A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior)

  • 김민성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF