• Title/Summary/Keyword: Electrochemical Corrosion Behavior

Search Result 304, Processing Time 0.021 seconds

A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr, Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

  • Saji, Viswanathan S.;Jeong, Yong Hoon;Choe, Han Cheol
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.139-142
    • /
    • 2009
  • Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by arc melting and heat treatment, was studied in 0.9 wt% NaCl at $37\pm1^{\circ}C$, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater (희생양극 하에서 알루미늄의 해수 부식 거동)

  • Kim Jong-Soo;Kim Hee-San
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment (해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution (H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

A Study on Characteristics of the Electrochemical Corrosion of Weld Zone for Refrigerating and Heating Systems Pipe (냉난방용 배관 용접부의 전기화학적 부식특성에 관한 연구)

  • Lim, Uh-Joh;Yun, Byoung-Du;Kim, Hwan-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.1
    • /
    • pp.84-90
    • /
    • 2007
  • This paper was studied on the electrochemical corrosion characteristics of weld zone for refrigerating and heating systems pipe. Austenitic stainless steel is widely applied to various fields of industry, because it is good to corrosion resistance and mechanical properties. But STS 304 is reliable to sensitization by heat cycle on welding. Therefore, in this study, electrochemical polarization test of STS 304 steel pipe manufactured by arc welding in tap water was carried out. And then polarization resistance behavior, uniform and local corrosion behaviors of base metal(BM), weld metal(WM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The corrosion current density of STS 304 steel pipe is high in order of BM(153nA/cm2) < WM(614nA/cm2) < HAZ ($1.675{\mu}A/cm2$). The pitting potential of HAZ(238mV/SCE) for STS 304 is lower than BM(1206mV/SCE) and WM(369mV/SCE). Therefore, the local corrosion like pitting corrosion, galvanic corrosion and crevice corrosion of HAZ for STS 304 is more sensitive than BM and WM.

Effect of SO42- Ion on Corrosion and Electrochemical Migration Characteristics of Eutectic SnPb Solder Alloy (공정조성 SnPb Solder 합금의 부식 및 Electrochemical Migration 특성에 미치는 SO42- 이온의 영향)

  • Jung, Ja-Young;Yoo, Young-Ran;Lee, Shin-Bok;Kim, Young-Sik;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Electrochemical migration phenomenon is correlated with ionization of anode electrode, and ionization of anode metal has similar mechanism with corrosion phenomenon. In this work, in-situ water drop test and evaluation of corrosion characteristics for SnPb solder alloys in $Na_2SO_4$ solutions were carried out to understand the fundamental electrochemical migration characteristics and to correlate each other. It was revealed that electrochemical migration behavior of SnPb solder alloys was closely related to the corrosion characteristics, and Sn Ivas primarily ionized in ${SO_4}{^2-}$ solutions. The quality of passive film formed at film surface seems to be critical not only for corrosion resistance but also for electrochemical migration resistance of solder alloys.

A study on Stress Corrosion Cracking of Sensor Wire in Thermally Insulated Underground Pipeline (이중보온관 부식감지선의 응력부식파괴에 관한 연구)

  • Choe, Yun-Je;Kim, Jeong-Gu
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • The thermally insulated underground pipelines have been used for district heating system. The sensor wire embedded in the insulation was used for monitoring the insulating resistance between the sensor wire and the pipe. The resistance measurement system detects corrosion of steel pipe under insulation. The corrosion and stress corrosion cracking(SCC) characteristics of sensor wire in synthetic ground water were investigated using the electrochemical methods and constant load SCC tests. The polarization tests were used to study the electrochemical behavior of sensor wire. The sensor wire was passivated at temperatures ranging from 25 to $95^{\circ}C$. However, the applied sensing current larger than passive current resulted in breakdown of passive film. The constant load SCC tests were performed to investigate the effects of applied current and load on the fracture behavior. Stress-corrosion cracks initiated at pits that were produced by sensing current. The growth of the pit involves a tunnelling mechanism, which leads to ductile fracture.

A Study on the Crevice Corrosion Behavior of Chromium Plating (크롬도금의 틈부식 거동에 관한 연구)

  • 곽남인;임우조
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.324-328
    • /
    • 2003
  • This study was made on the crevice corrosion behavior of chromium plating in fresh water. Under the various crevice, the electrochemical polarization test of chromium plating was carried out. Results are discussed In terms of corrosion potential, polarization resistance, corrosion current density and cathodic control of chromium plating.

Biocides Effect on the Microbiologically Influenced Corrosion of Pure Copper by Desulfovibrio sp.

  • Onan, Mert;Ilhan-Sungur, Esra;Gungor, Nihal Dogruoz;Cansever, Nurhan
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The aims of this study were to determine the corrosion behavior of pure copper in the presence of Desulfovibrio sp. and also to investigate the effects of glutaraldehyde (GD) and isothiazolinone (ISO) on the corrosion behavior of pure copper in the presence of this sulfate-reducing bacteria (SRB) strain by using electrochemical techniques. Electrochemical measurements of pure copper were carried out at specified time intervals (0, 8, 24, 48, and 96 hr) over a period of exposure. Corrosion rates of pure copper from anodic and cathodic Tafel slopes and corrosion potential ($E_{corr}$) were determined. Biofilm and corrosion products on the copper surfaces were observed by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectrometry (EDS) analyses. The effects of solution types (PC (Postgate's C medium) and SRB (Desulfovibrio sp.)) and exposure times of copper and biocides (ISO or GD) on the corrosion rates of pure copper were evaluated by statistical analyses. As a result of the FESEM analysis, biofilm formation was observed on the surfaces of pure copper exposed to the Desulfovibrio sp. cultures both with and without the biocides. The results show that the pure copper was corroded by Desulfovibrio sp. However, the addition of GD or ISO to the Desulfovibrio sp. culture resulted in a decrease in the corrosion rate of the pure copper. It was also observed that both of the biocides showed a similar effect on pure copper's corrosion rate caused by Desulfovibrio sp.

A Study on the Electrochemical Characteristics of Al-Si Casting Alloys in NaCl Solution (NaCl 수용액에서 Al-Si계 주조용 합금의 전기화학적 특성 연구)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.29-33
    • /
    • 2014
  • The electrochemical characteristics of Al-Si casting alloys (Al-10%Si, Al-9%Si, Al-7%Si) in 3.5% NaCl solution at room temperature was studied using potentiodynamic techniques. The electrochemical values of corrosion potential($E_c$), corrosion current density($I_c$) and corrosion rate(mpy) were examined. The Al-Si alloys had several compounds such as $Mg_2Si$, ${\pi}$-$Al_8Si_6Mg_2Fe$ and $Al_2CuMg$ which could affect corrosion resistance significantly. The potentiodynamic polarization curve exhibited typical active behavior in anodic polarization curve. The major corrosion mechansim for the Al-Si alloys were pitting and grain boundary corrosion. As increasing Si and Cu contents, their corrosion resistance was decreased.