• Title/Summary/Keyword: Electrochemical Analyzer

Search Result 54, Processing Time 0.024 seconds

Computer simulation to determine system parameters of the square-wave adapted fast impedance analyzer for the electrode - electrolyte interface analysis (구형파를 이용한 전극계면 분석용 고속 임피던스 분석기의 설계변수 확정을 위한 컴퓨터 시뮬레이션)

  • Kim Gi-Ryon;Kim Gwang-Nyeon;Shim Yoon-Bo;Jeon Gye-Rok;Jung Dong-Keun
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.45-55
    • /
    • 2005
  • There are electric double layer capacitance, polarization resistance and solution resistance in the interface between electrode and solution. Electrode process could be evaluated by the electrical impedance analysis. The necessities of the electrochemical cell analysis with high speed impedance analyzer are followings: minimization of the effects of electric stimulation on electrochemical cell and the concentration of reactive materials, and optimization of impedance signal resolution. This paper represents the design criteria for the selection and stimulation to develop fast impedance analyzer prototype for a electrochemical cell. It was suggested that the design of 470k sample/s sampling rate, 13 bit ABC resolution, and 140ms recording time is required for high speed impedance analysis system in frequency range between dc and 10kHz.

  • PDF

Fabrication of an Electrochemical Cell using a Lanthanum Stannate Pyrochlore Catalyst and its Characterization of NOx Gas Decomposition (Lanthanum Stannate Pyrochlore 촉매를 이용한 전기화학 촉매 셀의 제조 및 NOx 분해 특성 분석)

  • Park, Saro-Han;Moon, Joo-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.988-993
    • /
    • 2002
  • Electrochemical cells for decomposing $NO_x$ were fabricated using a hydrothermally synthesized lanthanum stannate pyrochlore catalyst. Thick film of the catalyst on the YSZ electrolyte disk was produced by screen-printing a paste consisted of $La_2Sn_2O_7$ and YSZ powders. Direct current was applied to the electrochemical cell to promote an electrochemical catalytic decomposition of $NO_x$. $NO_x$ decomposition behavior of the rectant gas mixture ($NO_x$ 0.1%, $O_2$ 2%) was investigated at 700${\circ}C$ under atmosphere pressure using on-line gas chromatography and $NO_x$ analyzer. It was observed that microstructure of the catalyst layer significantly influences the electrocatalystic decomposition of $NO_x$.

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt

  • Choi, Eun-Young;Im, Hun-Sook;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.138-144
    • /
    • 2013
  • Electrochemical reductions of $UO_2$ at various anode-to-cathode distances (1.3, 2.3, 3.2, 3.7 and 5.8 cm) were carried out to investigate the effect of the anode-to-cathode distance on the electrochemical reduction rate. The geometry of the electrolysis cell in this study, apart from the anode-to-cathode distance, was identical for all of the electrolysis runs. Porous $UO_2$ pellets were electrolyzed by controlling a constant cell voltage in molten $Li_2O-LiCl$ at $650^{\circ}C$. A steel basket containing the porous $UO_2$ pellets and a platinum plate were used as the cathode and anode, respectively. The metallic products were characterized by means of a thermogravimetric analyzer, an X-ray diffractometer and a scanning electron microscope. The electrolysis runs conducted during this study revealed that a short anode-to-cathode distance is advantageous to achieve a high current density and accelerate the electrochemical reduction process.

Disposable in-field electrochemical potable sensor system for free available chlorine (FAC) detection

  • Chang, Seung-Cheol;Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.449-456
    • /
    • 2007
  • The work described in this study concerns the development of a disposable amperometric sensor for the electrochemical detection of a well-known aqueous pollutant, free available chlorine (FAC). The FAC sensor developed used screen printed carbon electrodes (SPCEs) coupled with immobilised syringaldazine, commonly used as an indicator in photometric FAC detection, which was directly immobilised on the surface of SPCEs using a photopolymer PVA-SbQ. To enable in-field analysis of FAC, a prototype hand-held electrochemical analyzer has been developed to withstand the environment with its rugged design and environmentally sealed connections; it operates from two PP3 (9 volt) batteries and is comparable in accuracy and sensitivity to commercial bench top systems. The sensitivity of the FAC sensor developed was $3.5{\;}nA{\mu}M^{-1}cm^{-2}$ and the detection limit for FAC was found to be $2.0{\;}{\mu}M$.

A Study on the Ultrasonic Application for the Efficiency Elevation of Hydrogen Fuel Production (On the Decrease of Overpotential by LSV) (수소 연료생산의 효율 향상을 위한 초음파 응용에 관한 연구(LSV에 의한 과전압 저감 중심으로))

  • Ju, Eunsun;Park, Youngchul;Song, Mingeun;Son, Seungwoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.187-194
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The study on the decrease of overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on principle. Characteristics on the overpotential decrease are observed through the micro reaction by ultrasonic in electrolytic cell. For the above, the electrochemical analyzer, i.e., BAS is applied, Experiments with ultrasonic forcing into 4 kinds of solution such as city water, city water plus nitrogen. distilled water, and distilled water plus nitrogen are carried out. And concentrations of KOH are 0%, 10%, 20% and 30%. The basic characteristics of the overpotential decrease are obtained through the analysis by LSV technique in sweep technique. In results, it is clarified that the ultrasonic influences the decrease of overpotential to obtain the efficiency elevation of hydrogen fuel production.

Influence of Chemical Activation of Carbon Supports on Electrochemical Behaviors of Pt-Ru Nanoparticle for Fuel cells (연료전지 백금-루테늄 나노입자의 전기화학적 거동에 대한 탄소지지체의 활성화 효과)

  • Kim, Byung-Ju;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.93.2-93.2
    • /
    • 2011
  • In this work, graphite nanofibers (GNFs) were prepared for using catalyst supports in fuel cells. The GNFs were chemically activated to obtain high surface area and small pore diameter with different potassium hydroxide (KOH) amounts, i.e., 0, 1, 3, 4, and 5 g as an activating agent. And then Pt-Ru was deposited onto activated GNFs (A-GNFs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto A-GNFs were determined by specific surface area and pore size analyzer, X-ray diffraction (XRD), transmission electron microscopy (TEM), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrochemical properties of Pt-Ru/A-GNFs catalysts were also analyzed by cyclic voltammetry (CV) experiments. From the results, the A-GNFs carbon supports activated with 4 g of KOH (A4g-GNFs) showed that the highest specific surface areas. In addition, the A4g-GNFs led to uniform dispersion of Pt-Ru onto A4g-GNFs, resulting in the enhancement of electrochemical activity of Pt-Ru catalysts.

  • PDF

Electrochemical Properties of Self-Assembled Viologen Monolayers Using Quartz Crystal Analyzer (QCA를 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Park, Jae-Chul;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.141-144
    • /
    • 2004
  • Molecular self-assembled of surfactant viologens are recently interesting because they can be from functional electrodes as well as micelle assemblies which can be profitably utilized for display devices, electrochemical studies and electrocatalysis as electron acceptor or electron mediator. The electrochemical behavior of self-assembled viologen monolayer on Au electrode surface has been investigated with QCM which has been known as nano-gram order mass detector. A monolayer of viologen is immobilized on the gold electrode surface and the normal potentials corresponding to the to the successive one-electron transfer processes of the viologen actives are two peaks in 0.1mol/l phosphate buffer solution respectively. These result suggest that the viologen SAMs are stable and well-behaved monolayers.

  • PDF

Electrochemical Determination of Glucose Concentration Contained in Salt Solution (소금용액에 포함된 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.475-479
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.

  • PDF

Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor (전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구)

  • Lee, Jung-A.;Hwang, Seong-Pil;Kwak, Ju-Hyoun;Park, Se-Il;Lee, Seung-Seob;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.