Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.3.138

Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt  

Choi, Eun-Young (Korea Atomic Energy Research Institute)
Im, Hun-Sook (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.3, 2013 , pp. 138-144 More about this Journal
Abstract
Electrochemical reductions of $UO_2$ at various anode-to-cathode distances (1.3, 2.3, 3.2, 3.7 and 5.8 cm) were carried out to investigate the effect of the anode-to-cathode distance on the electrochemical reduction rate. The geometry of the electrolysis cell in this study, apart from the anode-to-cathode distance, was identical for all of the electrolysis runs. Porous $UO_2$ pellets were electrolyzed by controlling a constant cell voltage in molten $Li_2O-LiCl$ at $650^{\circ}C$. A steel basket containing the porous $UO_2$ pellets and a platinum plate were used as the cathode and anode, respectively. The metallic products were characterized by means of a thermogravimetric analyzer, an X-ray diffractometer and a scanning electron microscope. The electrolysis runs conducted during this study revealed that a short anode-to-cathode distance is advantageous to achieve a high current density and accelerate the electrochemical reduction process.
Keywords
Electrochemical reduction; Uranium oxide; Uranium; $Li_2O-LiCl$ molten salt;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 G. Z. Chen, D. J. Fray, and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride', Nature, 407, 361 (2000).   DOI   ScienceOn
2 K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_{2}$ in molten $CaCl_{2}$ for the production of solar grade silicon', Electrochim. Acta, 53, 106 (2007).   DOI   ScienceOn
3 D. Kasherman and M. Skyllas-Kazacos, 'Effects of anode-cathode distance on the cell potential and electrical bath resistivity in an aluminium electrolysis cell with a sloping $TiB_{2}$ composite cathode', J. Appl. Electrochem., 18, 863 (1988).   DOI
4 D. H. Andersen and Z. L. Zhang, 'Study on the anodeto- cathode distance in an aluminum reduction cell', Mater. Trans. B, 42, 424 (2011).
5 S. M. Jeong, H.-S. Shin, S.-S. Hong, J.-M. Hur, J. B. Do, and H. S. Lee, 'Electrochemical reduction behavior of $U_{3}O_{8}$ powder in a LiCl molten salt', Electrochim. Acta, 55, 1749 (2010).   DOI   ScienceOn
6 K. C. Pillai, S. J. Chung, and I.-S. Moon, 'Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process', Chemosphere, 73, 1505 (2008).   DOI   ScienceOn
7 D. B. Gent, A. Wani, and A. K. Alshawabkeh, 'Experimental design for one dimensional electrolytic reactive barrier for remediation of munition constituent in groundwater', Electrochim. Acta, 86, 130 (2012).   DOI   ScienceOn
8 D. J. Fray, 'Emerging molten salt technologies for metals production. JOM. 53, 26-39.
9 J.-H. Hur, S. M. Jeong, and H. Lee, 'Underpotential deposition of Li in a molten LiCl-$Li_{2}O$ electrolyte for the electrochemical reduction of U from uranium oxides', Electrochem. Commun., 12,706 (2010).   DOI   ScienceOn
10 Allanore, A., Ortiz, L. A., Sadoway, D. R., 2011. Molten oxide electrolysis for iron production: identification of key process parameters for large scale development', TMS Annual Meeting, 121 (2001).
11 M. F. Simpson and S. D. Herrmann, 'Modeling the pyrochemical reduction of spent $UO_{2}$ fuel in a pilot-scale reactor', Nucl. Technol., 162, 179 (2008).   DOI
12 H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.- H. Ahn, Y.-Z. Cho, and E. H. Kim, 'Pyroprocessing technology development at KAERI', Nucl. Eng. Technol., 43, 317 (2011)   DOI   ScienceOn
13 J.-H. Yoo, C.-S. Seo, E.-H. Kim, and H. Lee, 'A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels', Nucl. Eng. Technol., 40, 581 (2008).   DOI   ScienceOn
14 K.-C. Song, H. Lee, J.-M. Hur, J.-G. Kim, D.-H. Ahn, and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea', Nucl. Eng. Technol., 42, 131 (2010).   DOI   ScienceOn
15 Y. Sakamura and T. Omori, 'Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels', Nucl. Technol., 171, 266 (2010).   DOI
16 K. M. Goff, R. W. Benedict, K. L. Howden, G. M. Teske, and T. A. Johnson, 'Pyrochemical treatment of spent nuclear fuel', Proc. Global 2005, p. 364, Tsukuba, Japan (2005).
17 J.-M. Hur, C. S. Seo, S. S. Hong, D. S. Kang, and S. W. Park, 'Metallization of $U_{3}O_{8}$ via catalytic electrochemical reduction with $Li_{2}O$ in LiCl molten salt', React. Kinet. Catal. Lett., 80, 217 (2003).   DOI   ScienceOn
18 S. B. Park, B. H. Park, S. M. Jeong, J. M. Hur, C.-S. Seo, S.-H. Choi, and S. W. Park, 'Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-$Li_{2}O$ molten salt', J. Radioanal. Nucl. Chem., 268, 489 (2006).   DOI
19 Y. Sakamura, M. Kurata, and T. Inoue, 'Electrochemical reduction of $UO_{2}$ in molten $CaCl_{2}$ or LiCl', J. Electrochem. Soc., 153, D31 (2006).   DOI   ScienceOn
20 Y. Sakamura, T. Omori, and T. Inoue, 'Application of electrochemical reduction to produce metal fuel material form actinide oxides', Nucl. Technol., 162, 169 (2008).   DOI
21 J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman, and E. L. Carls, 'Development of pyroprocessing technology', Prog. Nucl. Energy, 31, 131 (1997).   DOI   ScienceOn
22 S. D. Herrmann, S. X. Li, M. F. Simpson, and S. Phongikarroon, 'Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products', Sep. Sci. Tech., 41, 1965 (2006).   DOI   ScienceOn
23 S. D. Herrmann and M. F. Simpson, 'Electrolytic reduction of spent light water reactor Fuel: Bench-scale experiment results', J. Nucl. Sci. Technol., 44, 36 (2007).   DOI
24 J. L. Willit, W. E. Miller, and J. E. Battles, 'Electrorefining of uranium and plutonium - a literature review', J. Nucl. Mater., 195, 229 (1992).   DOI   ScienceOn
25 R. W. Benedict and H. F. McFarlane, 'EBR-II spent fuel treatment demonstration project status', Radwaste Magazine, 5, 23 (1998).
26 J. Serp., R. J. M. Konings, R. Malmbeck, J. Rebizant, C. Scheppler, and J.-P. Glatz, 'Electrochemical behavior of plutonium ion in LiCl-KCl eutectic melts', J. Electroanal. Chem., 561, 143 (2004).   DOI   ScienceOn
27 K. M. Goff, J. C. Wass, K. C. Marsden, and G. M. Teske, 'Electrochemical processing of used nuclear fuel', Nucl. Eng. Technol., 43, 335 (2011).   DOI   ScienceOn
28 S. M. Jeong, S.-B. Park, S.-S. Hong, C.-S. Seo, and S.- W. Park, 'Electrolytic production of metallic uranium from $U_{3}O_{8}$ in a 20 kg-batch scale reactor', J. Radioanal. Nucl. Chem., 268, 349 (2006).   DOI   ScienceOn
29 M. Iizuka, Y. Sakamura, and T. Inoue, 'Development of pyroprocessing and its future direction', Nucl. Eng. Technol., 40, 183 (2008).   DOI   ScienceOn
30 J.-M. Hur, T.-J. Kim, I.-K. Choi, J. B. Do, S.-S. Hong, and C.-S. Seo, 'Chemical behavior of fission products in the petrochemical process', Nucl. Eng. Technol., 162, 192 (2008).   DOI
31 M. Gibilaro, J. Pivato, L. Cassayre, L. Massot, L. P. Chamelot, and P. Taxil, 'Direct electroreduction of oxides in molten fluoride salts', Electrochim. Acta, 56, 5410 (2011).   DOI   ScienceOn
32 S. Kitawaki, T. Shinozaki, M. Fukushima, T. Usami, N. Yahagi, and M. Kurata, 'Recovery of U-Pu alloy from MOX using pyroprocess series', Nucl. Technol., 162, 118 (2008).   DOI
33 S. M. Jeong, J. Y. Jung., C. S. Seo, and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_{2}O_{5}$ for the preparation of metallic tantalum in a LiCl-$Li_{2}O$ molten salt', J. Alloy Compd., 440, 210 (2007).   DOI   ScienceOn
34 S. I. Wang, G. M. Haarberg, and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_{2}O_{3}$ in molten $CaCl_{2}$-KF', J. Iron Steel Res., 16, 48 (2008).
35 D. Wang, G. Qiu, X. Jin, X. Hu, and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide', Angew. Chem. Int. Ed., 45, 2384 (2006).   DOI   ScienceOn
36 X. Y. Yan and D. J. Fray, 'Production of niobium powder by direct electrochemical reduction of solid $Nb_{2}O_{5}$ in a eutectic $CaCl_{2}$-NaCl melt', Metall. Mater. Trans. B, 33, 685 (2002).   DOI   ScienceOn
37 Q. Xu, L.-Q. Deng, Y. Wu, and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_{2}O_{5}$ in a eutectic $CaCl_{2}$-NaCl melt at 1073K', J. Alloy Compd., 396, 288 (2005).   DOI   ScienceOn
38 S. M. Jeong, H. Y. Yoo, J.-M. Hur, and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-$Li_{2}O$ molten salt', J. Alloy Compd., 452, 27 (2008).   DOI   ScienceOn
39 G. Z. Chen, E. Gordo, and D. J. Fray, 'Direct electrolytic preparation of chromium powder', Metall. Mater. Trans. B, 35, 223 (2004).   DOI
40 E. Gordo, G. Z. Chen, and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts', Electrochim. Acta, 49, 2195 (2004).   DOI   ScienceOn
41 B. Claux, J. Serp, and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal', Electrochim. Acta, 56, 2771 (2011).   DOI   ScienceOn