• 제목/요약/키워드: Electrocatalytic

검색결과 219건 처리시간 0.023초

Electrocheimical Evaluation of the Reaction Rafe and Electrochemical Optimization of the Mediated Electrochemical Reduction of NAD$^+$

  • Kang, Young-Wan;Kim, So-Hyoung;Kang, Chan;Yun, Sei-Eok
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 추계 학술대회
    • /
    • pp.181-188
    • /
    • 2000
  • The electrocatalytic reduction of NAD$^{+}$ using diaphorase was studied. methyl viologen (MV$^{2+}$) mediator between an electrode and the enzyme. Steady-state currents could be obtained under the conditions of slow scan rate, low MV$^{2+}$concentration, and high NAD$^{+}$ concentration as the electrode reaction was converted to an electrochemical-catalytic (EC') reaction. The biomecular rate constant for the reaction of the reduced methyl viologen with the oxidized diaphorase was estimated as 7.5$\times$10$^3$M$^{-1}$ s$^{-1}$ from the slope of the current versus [MV$^{2+}$] plot. And the optimal concentrations of diaphorase, MV$^{2+}$ and NAD$^{+}$ in the mediated electrocatalytic reduction of NAD$^{+}$ were decided by applying the cyclic voltammetry. The optimal concentrations of the species were obtained by finding the conditions which gave the highest and steady-state current at a gold-amalgam electrode. The highest and steady-state catalytic current was achieved under the conditions of 1.5 U/ml diaphorase, 0.2 mM MV$^{2+}$, and 4.8 mM NAD$^{+}$ at the scan rate of 2 mV s$^{-1}$ , suggesting that the rate of the electrocatalytic reation is the higest under the former conditions. The electrochemical procedure under the conditions of 1.5 U/ml diaphorase,0.2 mM MV$^{2+}$, and 4.8 mM NAD$^{+}$ was used favorably to drive an enzymatic reduction of pyruvate to D-lactate.

  • PDF

수전해용 공유가교 SPEEK/HPA 복합막의 제조 및 물리화학적 특성 (The Preparation and Physicochemical Characteristics of Covalently Cross-Linked SPEEK/HPA Composite Membranes for Water Electrolysis)

  • 황용구;이광문;우제영;정장훈;문상봉;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.95-103
    • /
    • 2009
  • In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated (SPEEK) and the organic-inorganic blend composite membranes has been prepared by loading heteropoly acids (HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA). And then these were covalently cross-linked (CL-SPEEK/HPA) as the electrolyte and MEA of polymer electrolyte membrane electrolysis (PEME). As a result, the optimum reaction conditions of CL-SPEEK/HPA was established and the electrochemical characteristics such as ion conductivity ($\sigma$) were in the order of magnitude: CL-SPEEK /TPA30 (${\sigma}=0.128\;S/cm^{-1}$) < /MoPA40 (${\sigma}=0.14\;S/cm^{-1})$ < /TSiA30 (${\sigma}=0.22\;S/cm^{-1}$) at $80^{\circ}C$, and mechanical characteristics such as tensile strength: CL-SPEEK /TSiA30 $\fallingdotseq$ /MoPA40 < /TPA30. Consequently, in regards of above characterisitics and oxidation durability, the CL-SPEEK/TPA30 exhibited a better performance in PEME than the others, but CL-SPEEK/MoPA40 showed the best electrocatalytic activity of cell voltage 1.71 V among the composite membranes. The dual effect of higher proton conductivity and electrocatalytic activity with the addition of HPAs, causes a synergy effect.

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

초음파 전기증착법을 활용한 고효율 염소 발생용 루테늄 옥사이드 전극 (Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies)

  • 트란 루 레;김춘수;윤제용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.397-407
    • /
    • 2017
  • A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발 (Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution)

  • 트란 루 레;김춘수;윤제용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.