• 제목/요약/키워드: Electro-mechanical analysis

검색결과 438건 처리시간 0.026초

공기압용 전자밸브의 자장해석과 밸브설계에의 응용 (A study on Magnetic Field Analysis of Pneumatic Solenoid Valve and its Application to Valve Design)

  • 강보식;김형의
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.41-48
    • /
    • 1990
  • Electro-pneumatic valves are an electro-mechanical device which convert electric signal into pneumatic flow rate or pressure signal. Recently, the development tendency of electro-pneumatic valve is to make the valve with more compact and less electric power consumption style. To make the valve such as a style, the role of solenoid part is very important. This paper is used in the finite-element method for the purpose of evaluating the magnetic property of solenoid and analyze flux distribution of solenoid theoretically. From flux contour line which is obtained by numerical analysis, it verified that the plunger shape and physical property of solenoid part have influence on saturation phenomenon and leakage of magnetic fluxs. This paper made an experiment on the measurement of dynamic response time and force in order to confirm the propety of analytic result, and confirmed a good agreement between analysis results and experiment results.

  • PDF

Backstepping Control for Multi-Machine Web Winding System

  • Bouchiba, Bousmaha;Hazzab, Abdeldjebar;Glaoui, Hachemi;Med-Karim, Fellah;Bousserhane, Ismail Khalil;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.59-66
    • /
    • 2011
  • This work treat the modeling and simulation of non-linear dynamic behavior of a web winding process during traction. We designate by a winding process any system applying the cycles of unwinding, transport, treatment, and winding to various flat products. This system knows several constraints, such as the thermal effects caused by the frictions, and the mechanical effects provoked by metal elongation, that generates dysfunctions due to the influence of the process conditions. Several controllers are considered, including Proportional-integral (PI) and Backstepping control. This paper presents the study of Backstepping controls strategy of the winding system. Our winding system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF

편심회전축 기반의 전기기계식 제동장치의 피로수명 해석 (Fatigue Analysis for Electro-Mechanical Brake Caliper based on Eccentric Rotating Shaft)

  • 오혁근;백승구;전창성
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.596-603
    • /
    • 2020
  • 전기기계식 제동장치(EMB : Electro-Mechanical Brake)는 자동차 및 철도차량의 차세대 제동장치로서 현재 연구가 활발히 진행되고 있다. 현재의 철도차량용 제동장치는 공압 실린더를 이용하여 제동 압부력을 발생시키나 전기기계식 제동장치 (EMB)에서는 전기 모터 및 기어와의 조합을 통하여 압부력을 발생시킨다. 본 연구에서는 고압부력 발생이 가능한 편심회전축 기반의 전기기계식 제동장치에 대한 유한요소 모델링 및 내구 수명해석을 통하여 국내 기준에 부합하는 전기기계식 제동장치의 설계를 진행하였다. 이때 내구수명해석의 정확도를 향상하기 위하여 시제품에 사용되는 소재와 동일한 열처리 등을 거친 피로시험 시편을 3종을 제작하여 소재별로 피로시험을 진행하였다. 각각의 소재에 대한 피로시험 결과로부터 피로물성치(응력-수명 선도)를 획득하여 해석모델에 반영하였다. 피로해석 결과로부터 EMB 시제품의 설계가 국내 철도차량용 내구수명 조건인 상용최대 제동/완해 53 만회를 만족할 수 있음을 확인하였다. 또한, 이 설계를 바탕으로 시제품을 제작하고 내구시험을 완료하여 개발된 시제품의 내구성 특성을 입증할 계획이다.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

Zn-Ni계 합금도금강판의 마찰특성에 관한 연구 (Frictional characteristics of electro Zn-Ni alloy coated steel sheets)

  • 김영석;박기철;조재억
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1807-1818
    • /
    • 1991
  • 본 연구에서는 자동차용 Zn-Ni계 합금 전기도금 강판(electro Zn-Ni alloy coated steel sheet, EGN)에서 도금층 중의 Ni함량에 따른 금층의 표면특성이 마찰거 동에 미치는 영향과 윤활유 종류에 따른 Ni 함량별 마찰특성을 파악하여 최적 스탬핑 조건을 도출하는데 기여하고자 한다.

MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석 (Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding)

  • 구진모;김재웅
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향 (Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings)

  • 진영준
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험 (The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System)

  • 박승현;오성진;이종화;박경석;김도중
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

Double-Gate MOSFET을 이용한 공핍형 NEMFET의 특성 분석 및 최적화 (Analysis and Optimization of a Depletion-Mode NEMFET Using a Double-Gate MOSFET)

  • 김지현;정나래;김유진;신형순
    • 대한전자공학회논문지SD
    • /
    • 제46권12호
    • /
    • pp.10-17
    • /
    • 2009
  • Double-Gate MOSFET 구조를 사용한 Nano-Electro-Mechanical MOSFET (NEMFET)는 게이트 길이가 짧아지면서 나타나는 단채널 현상을 효과적으로 제어하는 새로운 구조의 차세대 소자이다. 특히 공핍형 Double-gate NEMFET (Dep-DGNEMFET)은 차단 상태에서 얇은 산화막을 가지므로 subthreshold 전류가 효과적으로 제어된다. 이러한 Dep-DGNEMFET 특성에 대한 해석적 수식을 유도하고 소자 구조가 변화하는 경우의 특성 변화를 분석하였다. 또한 ITRS (International Technology Roadmap for Semiconductors) 전류 기준값을 만족시키기 위하여 Dep-DGNEMFET 소자 구조를 최적화 하였다.