• 제목/요약/키워드: Electro-mechanical Actuator

Search Result 189, Processing Time 0.023 seconds

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

An Experimental Study on Control System Performance of an Electro-Hydraulic Copying Machine (전기 유압식 모방절삭 기계 의 제어성능 에 관한 연구)

  • 윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.104-110
    • /
    • 1984
  • An electro-hydraulic copying system is developed and its performance is experimentally investigated. As compared with a mechanical hydraulic coping system, this system has a basic difference in that; (1) the stylus movement is converted into an electrical signal via a position transducer. (2)the actuator displacement is also measured by a position sensing element, which serves as a feedback signal. Since the system parameters affect the control performance, the response characteristics such as percentage overshoot, rise time, settling time and steady state error are experimentally obtained under variation of these variables. The system parameter include supply pressure, servo amplifier gain and feedback gain. The experimental result shows that the cutting tool follows a stylus input motion to a desirable accuracy. The implication of this result indicates that the developed system can enhance the copying accuracy of the conventionally used mechanical type of hydraulic copying system.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Design and Fabrication of Low-Voltage Twisting-Type Thermal Actuators for Micromirrors (마이크로 거울의 구동을 위한 저전압 비틀림형 열구동기의 설계 및 제작)

  • Kim, Dong-Hyun;Park, Yong-Chul;Park, Seung-Ho;Kwon, Oh-Myoung;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.803-810
    • /
    • 2009
  • Micromirrors have a wide range of applications such as optical switches, laser scanners, and digital projection displays. Due to their low performances and high costs, however, practical applications of micromirrors are quite limited. At present micromirrors demand not only a better design but also a simple fabrication process. In this study a twisting-type micromirror that can be driven by two thermal bimorph actuators bending in opposite directions is designed from electro-thermo-mechanical theories and fabricated through a simple MEMS process. Each actuator consists of $SiO_2$ and gold thin-film layers. Simplified analytical model has been built to optimize the performance of micromirror. Due to unexpected resistance increase of metal film and alignment mismatch during fabrication process, experimental rotation angles of micromirrors are about $11^{\circ}$ at applied voltages less than 0.6V. From numerical simulation and analytical studies, however, the next design can provide rotation angles over $20^{\circ}$ at the same applied voltage.

Reduction of Free Edge Peeling Stress in Composite Laminates under Bending Load (굽힘하중이 가해지는 복합재 평판 자유단에서의 박리응력 감소 연구)

  • Jung, Seok-Joo;Sung, Myung-Kyun;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.497-502
    • /
    • 2015
  • In this paper, a stress function-based approach was proposed to analyze the reduction of free-edge peeling stress in smart composite laminates using piezoelectric actuator under bending load. Electro-mechanically coupled governing equation was obtained by complimentary virtual work principle. The stress state was solved by the generalized eigenvalue procedure. The free-edge peeling stress of smart composite laminates was reduced by the piezoelectric actuation. The reduction rate of peeling stress in cross-ply composite laminate is larger than that in angle ply composite laminate.

Mechanically Modulated Actuators and Branched Finger Detectors for Nano-Precision MEMS Applications

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.1-39
    • /
    • 2002
  • We present nanoactuators and nanodetectors for high-precision Micro Electro Mechanical System (MEMS) applications. Major technical difficulties in the high-precision MEMS are arising from the fabrication uncertainty and electrical noise problems. In this paper, we present high-precision actuators and detectors, overcoming the technical limitations placed by the conventional MEMS technology. For the nano-precision actuation, we present a nonlinearly modulated digital actuator (NMDA). NMDA composed of a digital microactuator and a nonlinear micromechanical modulator. The nonlinear micromechanical modulator is intended to purify the actuation errors in the stroke of the digital a...

  • PDF

Ramp loading scratch 방법에 의한 실리콘 기반 박막들의 파손 특성에 관한 연구

  • 이재원;정구현;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.140-140
    • /
    • 2004
  • 마이크로 기술을 대변하는 Micro-Electro-Mechanical-Systems (MEMS)와 반도체, 각종 micro-sensor 및 actuator 등은 실리콘 위에 박막 코팅한 재료를 주로 사용하고 있다. 따라서 1 Um 이하의 박막코팅에 의해 원하는 성능을 얻으려는 시도가 널리 진행되고 있다 Hard Disk Drive (HDD)의 Head-Disk Interface (HDI)와 MEMS 접촉면에서는 발생하는 마찰 및 마멸에 대한 문제 등은 중요한 고려대상이다. 특히 코팅 층의 표면 파손 현상은 코팅 층의 파손 특성과 코팅 층과 기판 사이의 결합상태가 큰 영향을 미친다.(중략)

  • PDF

Skewed Electrode Array(SEA) and Its Application as an Angular Microactuator (경사 전극 배열을 이용한 각도방향 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2011
  • The angular electrostatic microactuator using skewed electrode array (SEA) scheme was proposed. The moving and fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, electrostatic FE analysis were carried out and the empirical force model was established for SEA. Simulation was performed to make the comparison between conventional actuators and SEA. The proposed SEA generates actuating torque 2 times greater than a comb-drive and stable actuator displacement 40% greater than a parallel plate type actuator. The angular electrostatic microactuator using skewed SEA scheme was designed and fabricated using SoG process.

  • PDF