• Title/Summary/Keyword: Electro-chemical method

Search Result 188, Processing Time 0.026 seconds

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

A Study of $SrTiO_3$ Synthesis by Direct Wet Process ($SrTiO_3$의 습식 직접 합성법)

  • 이종근;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 1984
  • It is desirable to establish reliable synthetic methods for electro-ceramic materials. To synthesize $SrTiO_3$ in this study direct solid state reactions and wet chemical processes were used. Previous study of $SrTiO_3$ synthesis included oxalated-method($SrTiO(C_2O_4)_2$.$4H_2O$) co-precipitation$(SrCO_3+TiO(OH)_2)$ and direct solid state reaction$(SrCO_3+TiO(OH)_2)$ The methods in question lead to intermediate inclusion during the reactions and less controllable in particle sizes of $SrTiO_3$. To obtain highly pure $SrTiO_3$ so-called "direct wet process method" was added in this investigation. In the study the "direct wet process" was for the first time applied to synthesize chemically pure and fine particle $SrTiO_3$. $SrCl_2$ and $TiCl_4$<\ulcornerTEX> at KOH solution at room temperature to 10$0^{\circ}C$ precipitated $SrTiO_3$ The particle size increased as temperature increased.mperature increased.

  • PDF

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade (Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Ryu, Seung-U;Kim, Hyo-Jin;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.

Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells

  • Im, Ae-Lee;Kim, Jangho;Lim, KiTaek;Seonwoo, Hoon;Cho, Woojae;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Purpose: Stem cells provide new opportunities in the regenerative medicine for human or animal tissue regeneration. In this study, we report an efficient method for the modulating behaviors of electro-active stem cells by micro-electric current stimulation (mES) without using chemical agents, such as serum or induction chemicals. Methods: Dental pulp stem cells (DPSCs) were cultured on the tissue culture dish in the mES system. To find a suitable mES condition to promote the DPSC functions, the response surface analysis was used. Results: We found that a working micro-current of 38 ${\mu}A$ showed higher DPSC proliferation compared with other working conditions. The mES altered the expressions of intracellular and extracellular proteins compared to those in unstimulated cells. The mES with 38 ${\mu}A$ significantly increased osteogenesis of DPSCs compared with ones without mES. Conclusions: Our findings indicate that mES may induce DPSC proliferation and differentiation, resulting in applying to DPSCs-based human or animal tissue regeneration.

Study of Etching Method for Plating Layer Formation of ABS Resin (ABS 수지상의 도금층 형성을 위한 에칭 방법 연구)

  • Choi, Kyoung Su;Choi, Ki Duk;Shin, Hyun Jun;Lee, Sang-Ki;Choi, Soon Don
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.128-136
    • /
    • 2014
  • In the present study, we successfully developed an eco-friendly chemical etching solution and proper condition for plating on ABS material. The mechanism of forming Ni plating layer on ABS substrate is known as following. In general, the etching solution used for the etching process is a solution of chromic acid and sulfuric acid. The etching solution is given to the surface resulting in elution of butadiene group, so-called anchor effect. Such a rough surface can easily adsorb catalyst resulting in the increase of adhesion between ABS substrate and Ni plating layer. However a use of chromic acid is harmful to environment. It is, therefore, essential to develop a new alternative solution. In the present study, we proposed an eco-friendly etching solution composed of potassium permanganate, sulfuric acid and phosphoric acid. This solution was testified to observe the surface microstructure and the pore size of electrical Ni plating layer, and the adhesive correlation between deposited layers fabricated by electro Ni plating was confirmed. The result of the present study, the newly developed, eco-friendly etching solution, which is a mixture of potassium permanganate 25 g/L, sulfuric acid 650ml/L and phosphoric acid 250ml/L, has a similar etching effect and adhesion property, compared with the commercially used chromium acid solution in the condition at $70^{\circ}C$ for 5 min.

A Study on Mechanical Properties of IPMC actuators (IPMC 작동기의 기계적 물성에 관한 연구)

  • Kim, Hong-Il;Kim, Dae-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.50-54
    • /
    • 2007
  • The Ionic Polymer Metal Composite (IPMC), an electro-active polymer, has many advantages including bending actuation, low weight, low power consumption, and flexibility. These advantages coincide with the requirements of a bio-related application. Thus, IPMC is promising materials for bio-mimetic actuator and sensor applications. Before applying IPMC to actual application, basic mechanical properties of IPMC should be studied in order to utilize IPMC for practical uses. Therefore, IPMCs are fabricated to investigate the mechanical characteristics. Nafion is used as a base ionic polymer. Mason samples cast with various thicknesses are used to test the thickness effects of IPMC. Subsequently, IPMC is fabricated using the chemical reduction method. The deformation, blocking force and frequency response of the IPMC actuator are important properties. In this present study, the performances of the IPMC actuators, including the deformation, blocking force and natural frequency, are then obtained according to only the input voltage and IPMC dimensions. Finally, the empirical performance model and the equivalent stiffness model of the IPMC actuator are established using experiments results.

Syntheses of Improved Polymer/Organic Materials for Electroluminescence(EL) Device and Electro-Optical Characteristics(Ⅱ) Properties of EL Device using Squarylium Dye as Emitting Material (고기능 EL소자용 고분자/유기 재료의 합성 및 전기 광학적 특성(Ⅱ) Squarylium 색소를 이용한 EL소자의 특성)

  • Kim, Sung Hoon;Bae, Jin Seok;Hwang, Seok Hwan;Park, Lee Soon
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.144-149
    • /
    • 1997
  • Organic electroluminescence devices(ELD) were fabricated using by molecularly doped method with N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) as a hole transport agent, squarylium dye as an emitting agent, and side chain liquid crystalline polymer(MCH) as matrix for TPD. An indium-tin-oxide(ITO) coated glass and an Mg electrode were used as the hole and the electron injecting electrode, respectively. The highest stability of ELD was obtained by spin coating method using dichloroethane as a solvent at a polymer/TPD concentration of 0.005 wt%. For the EL cell with ITO/polymer-TPD/SQ dye/Mg structure, we achieved light red luminescence at a current of 102 mA/$cm^2$ with an applied voltage of 23 V.

  • PDF

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

Characteristics of IEF Patterns and SDS-PAGE Results of Korean EPO Biosimilars

  • Kang, Min-Jung;Shin, Sang-Mi;Yoo, Hey-Hyun;Kwon, Oh-Seung;Jin, Chang-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2493-2496
    • /
    • 2010
  • Erythropoietin (EPO) is mainly produced in kidney and stimulates erythropoiesis. The use of recombinant EPOs for doping is prohibited because of its performance enhancing effect. This study investigated whether biosimilar EPOs could be differentiated from endogenous one by iso-electro-focusing plus double blotting and SDS-PAGE for antidoping analysis. The established method was validated with positive control urine. The band patterns were reproducible and meet the criteria, which was made by world anti doping agency (WADA). Isoelectric focusing was conducted in pH range 2 to 6. Recormon (La Roche), Aropotin (Kunwha), Epokine (CJ Pharm Co.), Eporon (Dong-A), Espogen (LG Life Sciences), and Dynepo (Shire Pharmaceuticals) were detected in basic region. All biosimilars showed discriminative isoelectric profiles from endogenous EPO profiles, but they showed different band patterns with the reference one except Epokine (CJ Pharm Co.). Next, SDS-PAGE of biosimilar EPOs resulted in different molecular weight patterns which were distributed higher than endogenous EPO. Commercial immune assay kit as an immune affinity purification tool and immobilized antibody coated magnetic bead were tested for the purification and concentration of EPO from urinary matrix. The antibody-coated magnetic bead gave better purification yield. The IEF plus double blotting and SDS-PAGE with immunoaffinity purification method established can be used to discriminate biosimilar EPOs from endogenous EPO.