Browse > Article
http://dx.doi.org/10.5307/JBE.2013.38.2.113

Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells  

Im, Ae-Lee (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Kim, Jangho (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Lim, KiTaek (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Seonwoo, Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Cho, Woojae (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Choung, Pill-Hoon (Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University)
Chung, Jong Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Publication Information
Journal of Biosystems Engineering / v.38, no.2, 2013 , pp. 113-120 More about this Journal
Abstract
Purpose: Stem cells provide new opportunities in the regenerative medicine for human or animal tissue regeneration. In this study, we report an efficient method for the modulating behaviors of electro-active stem cells by micro-electric current stimulation (mES) without using chemical agents, such as serum or induction chemicals. Methods: Dental pulp stem cells (DPSCs) were cultured on the tissue culture dish in the mES system. To find a suitable mES condition to promote the DPSC functions, the response surface analysis was used. Results: We found that a working micro-current of 38 ${\mu}A$ showed higher DPSC proliferation compared with other working conditions. The mES altered the expressions of intracellular and extracellular proteins compared to those in unstimulated cells. The mES with 38 ${\mu}A$ significantly increased osteogenesis of DPSCs compared with ones without mES. Conclusions: Our findings indicate that mES may induce DPSC proliferation and differentiation, resulting in applying to DPSCs-based human or animal tissue regeneration.
Keywords
Differentiation; Dental pulp stem cell; Micro-electric current stimulation; Proliferation; Response surface analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim, K. T., J. H. Kim, S. Hoon, J. U. Chang, H. C. Choi, J. Hexiu, W. J. Cho, P. H. Choung andJ. H. Chung. 2013. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method. Tissue Engineering Part C: Methods 19(2):128-145.   DOI   ScienceOn
2 Richardson, L. E., J. Dudhia, P. D. Clegg and R. Smith. 2007. Stem cells in veterinary medicine-attempts at regenerating equine tendon after injury. Trends in biotechnology 25(9):409-416.   DOI   ScienceOn
3 Tandon, N., A. Marsano, R. Maidhof, K. Numata, C. Montouri-Sorrentino, C. Cannizzaro, J. Voldman and G. Vunjak-Novakovic. 2010. Surface-patterned electrode bioreactor for electrical stimulation. Lab on a Chip 10(6):692-700.   DOI   ScienceOn
4 Wang, J., H. Ma, X. Jin, J. Hu, X. Liu, L. Ni and P. X. Ma. 2011. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31):7822-7830.   DOI   ScienceOn
5 Zhao, M., A. Dick, J. V. Forrester and C. D. McCaig. 1999. Electric field-directed cell motility involves upregulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Molecular biology of the cell 10(4):1259-1276.   DOI
6 Zhuang, H., W. Wang, R. M. Seldes, A. D. Tahernia, H. Fan and C. T. Brighton. 1997. Electrical stimulation induces the level of TGF-${\beta}1$ mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and biophysical research communications 237(2):225-229.   DOI   ScienceOn
7 Aaron, R. K., S. Wang and D. M. Ciombor. 2002. Upregulation of basal $TGF{\beta}1$ levels by EMF coincident with chondrogenesis-implications for skeletal repair and tissue engineering. Journal of orthopaedic research 20(2):233-240.   DOI   ScienceOn
8 Au, H. T. H., B. Cui, Z. E. Chu, T. Veres and M. Radisic. 2009. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab on a Chip 9(4):564-575.   DOI   ScienceOn
9 Baumann, S. B., D. R. Wozny, S. K. Kelly and F. M. Meno. 1997. The electrical conductivity of human cerebrospinal fluid at body temperature. Biomedical Engineering, IEEE Transactions on 44(3):220-223.   DOI   ScienceOn
10 Berg, H. 1995. Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochemistry and bioenergetics 38(1):153-159.   DOI   ScienceOn
11 Jo, Y.-Y., H.-J. Lee, S.-Y. Kook, H.-W. Choung, J.-Y. Park, J.-H. Chung, Y.-H. Choung, E.-S. Kim, H.-C. Yang and P.-H. Choung. 2007. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue engineering 13(4):767-773.   DOI   ScienceOn
12 Falanga, V., G. Bourguignon and L. Bourguignon. 1987. Electrical stimulation increases the expression of fibroblast receptors for transforming growth factorbeta. J Invest Dermatol 88(4):4-6.
13 Gronthos, S., M. Mankani, J. Brahim, P. G. Robey and S. Shi. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences 97(25):13625-13630.
14 Haddad, J. B., A. G. Obolensky and P. Shinnick. 2007. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. The Journal of Alternative and Complementary Medicine 13(5):485-490.   DOI   ScienceOn
15 Kim, D.-H., P. K. Wong, J. Park, A. Levchenko and Y. Sun. 2009. Microengineered platforms for cell mechanobiology. Annual review of biomedical engineering 11:203-233.   DOI   ScienceOn
16 Kim, I. S., J. K. Song, Y. L. Zhang, T. H. Lee, T. H. Cho, Y. M. Song, D. K. Kim, S. J. Kim and S. J. Hwang. 2006. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763(9):907-916.   DOI   ScienceOn
17 Kim, J., Y. R. Kim, Y. Kim, K. T. Lim, H. Seonwoo, S. Park, S. P. Cho, B. H. Hong, P. H. Choung , T. D. Chung, Y. H. Choung and J.H. Chung. 2013. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B 1(7): 933-938.   DOI   ScienceOn
18 Kim, J. H., C. S. Cho, Y. H. Choung, K.T. Lim, H. M. Son, H. Seonwoo, S. J. Baik, J. Y. Park, P. H. Choung and J. H. Chung. 2009. Mechanical stimulation of mesenchymal stem cells for tissue engineering. Tissue Engineering and Regenerative Medicine 6(1):199-206.
19 Aaron, R. K., D. M. Ciombor, H. Keeping, S. Wang, A. Capuano and C. Polk. 1999. Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-${\beta}1$ expression. Bioelectromagnetics 20(7):453-458.   DOI   ScienceOn
20 Li, X., T. Xu, X. Ma, K. Guo, L. Kai, Y. Zhao, X. Jia and Y. Ma. 2008. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresource technology 99(13): 5391-5396.   DOI   ScienceOn