• Title/Summary/Keyword: Electro-Oxidation

Search Result 117, Processing Time 0.039 seconds

Study on Fabrication of Highly Ordered Nano Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 마스터 제작에 관한 연구)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Electro-Catalytic Oxidation of Amoxicillin by Carbon Ceramic Electrode Modified with Copper Iodide

  • Karim-Nezhad, Ghasem;Pashazadeh, Ali;Pashazadeh, Sara
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.322-328
    • /
    • 2013
  • Copper iodide was employed as a modifier for preparation of a new carbon ceramic electrode. For the first time, the catalytic oxidation of amoxicillin (AMX) was demonstrated by cyclic voltammetry, chronoamperometry and amperometry methods at the surface of this modified carbon ceramic electrode. The copper iodide modified sol-gel derived carbon ceramic (CIM-SGD-CC) electrode has very high catalytic ability for electrooxidation of amoxicillin. The catalytic oxidation peak current was linearly dependent on the amoxicillin concentration and the linearity range obtained was 100 to 1000 ${\mu}mol\;L^{-1}$ with a detection limit of 0.53 ${\mu}mol\;L^{-1}$. The diffusion coefficient ($D=(1.67{\pm}0.102){\times}10^{-3}\;cm^2\;s^{-1}$), and the kinetic parameter such as the electron transfer coefficient (${\alpha}$) and exchange current density ($j_0$) for the modified electrode were calculated. The advantages of the modified CCE are its good stability and reproducibility of surface renewal by simple polishing, excellent catalytic activity and simplicity of preparation.

Fabrication of Polymer Master with High Aspect Ratio by Using Anodic Aluminum Oxidation (양극산화공정을 이용한 고세장비의 폴리머 마스터 제작)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.285-287
    • /
    • 2008
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

Growth and Properties of Co-doped Ce,Mn:LiTaO3 Single Crystals

  • Gang, Bong-Hoon;Rhee, Bum-Ku;Lim, Ki-Soo;Bae, Sung-Ho;Joo, Gi-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.711-714
    • /
    • 2002
  • The Ce, Mn: $LiTaO_3$ crystals were grown by Czochralski method in congruent ${\varphi}$3" $LiTaO_3$ single crystal growing conditions. Concentrations of Ce and Mn in melt were respectively 0.1 mole%. As-grown crystals were red, transparent and the grown crystals were tested with oxidation/reduction treatment for clor and other properties. Influence of Ce and Mn dopants on $LiTaO_3$ crystal properties was discussed. And the nonlinear optical properties of the Ce, Mn: $LiTaO_3$ crystal are being studied.

Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC (염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.

Preparation of 3,4-Ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) Copolymer Having Hole Transport Ability

  • Sim, Jae-Ho;Sato, Hisaya
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.714-717
    • /
    • 2009
  • Hole transport copolymers consisting of 3,4-ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) were synthesized by oxidative coupling reaction using $FeCl_3$ as an oxidant. These copolymers showed good solubility and their thin films showed sufficient morphological stability. The copolymers showed an absorption maximum around 320 nm. Copolymers had an oxidation peak at approximately $1.03{\sim}1.14V$ versus the Ag/AgCl electrode. The hole mobility increased with increasing portion of the EDOT unit. The hole mobility of the copolymer containing 57% of the EDOT unit showed the highest mobility of $3{\times}10^{-5}cm^2/V{\cdot}s$.

Mechanical Properties of the Pressureless Sintered Si3N4-TiN Ceramic Composities (상압소결 Si3N4-TiN 복합재료의 기계적성질)

  • 송진수;손용배;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.409-415
    • /
    • 1989
  • Si3N4-TiN electro-conductive ceramic composites with 7wt% Al2O3+3wt% Y2O3 or 5wt% MgO as sintering aids were fabricated by pressureless sintering at 1,80$0^{\circ}C$ for 1h. The 3pt. flexural strength, KIC and Vickers hardness were measrued in order to investigate the effects of TiN on the mechanical properties. Also oxidation behavior was observed by measuring the weight gain after exposure to air at 1,10$0^{\circ}C$ for 100h. the reaction products between Si3N4 and TiN was not detected by XRD and EDS. Mechanical properties of the composites were not influenced by the addition of TiN less than 30vol%, but oxidation resistance of the composites was rapidly decreased with the amount of added TiN.

  • PDF

Method of Solving Oxidation Problem in Copper Pillar Bump Packaging Technology of High Density IC (고집적 소자용 구리기둥범프 패키징에서 산화문제를 해결하기 위한 방법에 대한 연구)

  • Jung, One-Chul;Hong, Sang-Jeen;Soh, Dae-Wha;Hwang, Jae-Ryong;Cho, Il-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.919-923
    • /
    • 2010
  • Copper pillar tin bump (CPTB) was developed for high density chip interconnect technology. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM -1250 dry film photoresist (DFR), copper electroplating method and Sn electro-less plating method. Mechanical shear strength measurements were introduced to characterize the bonding process as a function of thermo-compression. Shear strength has maximum value with $330^{\circ}C$ and 500 N thenno-compression process. Through the simulation work, it was proved that when the copper pillar tin bump decreased in its size, it was largely affected by the copper oxidation.