• 제목/요약/키워드: Electrical stimulation therapy

검색결과 429건 처리시간 0.022초

뇌졸중 환자의 상지 기능 향상을 위한 말초감각신경자극의 효과에 관한 체계적 고찰 (Systematic Review on Effect of Peripheral Sensory Nerve Stimulation on Upper Extremity Function for Stroke Patients)

  • 김선호;박지혁
    • 재활치료과학
    • /
    • 제5권2호
    • /
    • pp.11-22
    • /
    • 2016
  • 목적: 본 연구는 국외 뇌졸중 환자에게 적용한 한 말초감각신경자극의 효과에 대하여 고찰하기 위한 것으로 국외 학술지를 대상으로 체계적 문헌고찰 연구방법을 시행하였다. 연구방법: 2015년 10월 이전까지 국외 학술지에 게재된 논문을 Pubmed를 통하여 검색하였다. 주요 검색 용어로는 'peripheral nerve stimulation', 'electrical stimulation', 'sensory stimulation', 'somatosensory stimulation', 'stroke', 'hemiplegia', 'hemiparesis' 와 'hand', 'arm', 'upper limb'를 사용하였다. 최초 검색된 논문은 501편이었으나 선정 및 배제기준을 거쳐 10편의 연구가 선정되었다. 결과: 임상적으로 널리 사용되고 있는 말초감각신경자극은 뇌졸중 환자들에게 적용이 될 때에 보다 다양한 중재방법으로 연구에 적용이 되고 있었다. 말초감각신경자극치료는 뇌졸중 환자의 상지 기능에 효과를 나타냈으며, 대뇌피질의 활성화에도 긍정적인 영향을 나타냈다. 결론: 본 연구는 말초감각신경자극치료의 적용에 대한 근거를 제시하며, 향후 국내연구에서는 다양한 중재방법을 적용하여 말초감각신경자극의 효과를 더 정확하게 측정을 할 수 있는 방법에 대한 연구가 필요하다.

Transcutaneous electrical nerve stimulation, acupuncture, and spinal cord stimulation on neuropathic, inflammatory and, non-inflammatory pain in rat models

  • Sato, Karina Laurenti;Sanada, Luciana Sayuri;da Silva, Morgana Duarte;Okubo, Rodrigo;Sluka, Kathleen A.
    • The Korean Journal of Pain
    • /
    • 제33권2호
    • /
    • pp.121-130
    • /
    • 2020
  • Background: Transcutaneous electrical nerve stimulation (TENS), manual acupuncture (MA), and spinal cord stimulation (SCS) are used to treat a variety of pain conditions. These non-pharmacological treatments are often thought to work through similar mechanisms, and thus should have similar effects for different types of pain. However, it is unclear if each of these treatments work equally well on each type of pain condition. The purpose of this study was to compared the effects of TENS, MA, and SCS on neuropathic, inflammatory, and non-inflammatory pain models. Methods: TENS 60 Hz, 200 ㎲, 90% motor threshold (MT), SCS was applied at 60 Hz, an intensity of 90% MT, and a 0.25 ms pulse width. MA was performed by inserting a stainless-steel needle to a depth of about 4-5 mm at the Sanyinjiao (SP6) and Zusanli (ST36) acupoints on a spared nerve injury (SNI), knee joint inflammation (3% carrageenan), and non-inflammatory muscle pain (intramuscular pH 4.0 injections) in rats. Mechanical withdrawal thresholds of the paw, muscle, and/or joint were assessed before and after induction of the pain model, and daily before and after treatment. Results: The reduced withdrawal thresholds were significantly reversed by application of either TENS or SCS (P < 0.05). MA, on the other hand, increased the withdrawal threshold in animals with SNI and joint inflammation, but not chronic muscle pain. Conclusions: TENS and SCS produce similar effects in neuropathic, inflammatory and non-inflammatory muscle pain models while MA is only effective in inflammatory and neuropathic pain models.

The Effects of Functional Electrical Stimulation Combined with Action Observation on Sensorimotor Cortex

  • Kim, Ji Young;Park, Ji Won;Kim, Seong Yoel
    • The Journal of Korean Physical Therapy
    • /
    • 제29권4호
    • /
    • pp.164-168
    • /
    • 2017
  • Purpose: Functional electrical stimulation (FES) is a device that activates the sensorimotor cortex through electrodes attached to the surface of the skin. However, it is difficult to expect positive changes if the recipient is not attentive to the motion. To complement the perceived cognitive limitations of FES, we attempted to investigate the changes of sensorimotor cortex activity by simultaneously providing action observation with FES. Methods: Electroencephalogram was measured in 28 healthy volunteers. Relative band power over the sensorimotor cortex was analyzed and compared in three conditions: during rest, during FES alone, during action observation with FES. Results: The results showed significant differences in each relative band power. Relative alpha power and relative beta power were the lowest by application of FES combined with action observation, while the relative gamma power was the highest. Conclusion: These results suggest that combining FES with observation could be more effective than FES alone in neurorehabilitation.

기능적 전기 자극을 적용한 전동식 보행 훈련이 편마비 환자의 보행에 미치는 영향 (Effectiveness of Gait Training Using an Electromechanical Gait Trainer Combined With Simultaneous Functional Electrical Stimulation in Chronic Stroke Patients)

  • 안승헌;이윤미;양경희
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.41-47
    • /
    • 2008
  • Purpose: This study aimed to assess the effectiveness of gait training with the use of an electromechanical gait trainer with functional electrical stimulation (FES) for patients that had undergone subacute stroke. Methods: The study subjects included nine subacute stroke patients of the Korea National Rehabilitation Center in Seoul, Korea. Outcome was measured using the timed Up and Go test, Fugl-Meyer-L/E assesment, with determination of the comfortable maximal gait speed, composite spasticity score, functional ambulatory category and Berg balance scale. All measured scores were recorded before, during, and after rehabilitation and at an eight-week follow-up. Results: Patients who received electromechanical-assisted gait training in combination with FES after subacute stroke were more likely to achieve independent walking, functional activities, balance and gait speed. Conclusion: The outcome of our gait-training program demonstrates that it may be practical to integrate FES into electromechanical gait training without any adverse effects. However, further randomized controlled studies are needed to evaluate if patient outcome after combined training is superior to outcome after the use of electromechanical gait trainer treatment alone or conventional gait training alone.

  • PDF

돼지 적출 심장 관상동맥에 있어서 Perivascular Nerve Stimulation에 의한 Cholinergic 수축 작용 (Cholinergic Contraction to the Perivascular Nerve Stimulation on the Isolated Coronary Artery of Pig)

  • 이한기;구봉오;문상은;심철수
    • The Journal of Korean Physical Therapy
    • /
    • 제13권1호
    • /
    • pp.61-71
    • /
    • 2001
  • The purpose oi this study is to identify clearly the physiologic significance of autonomic nervous system. This study is to find the loose of endogenous neurotransmitter while using the neural response of the neural excitatory action which is distributed to the perivascular smooth muscle through the electrical stimulation of the smooth muscle of coronary artery of pig. The effects of perivascular nerve stimulation were investigated on isolated coronary artery of pig.1 . The magnitude of contractile response to perivascular nerve stimulation increased with increasing frequency (2-80 Hz) of stimulation. 2. The contractions to perivascular nerve stimulation(40V, 40Hz. 0.5msec, 1 min) were increased greatly by pretreatment of the cholinestrase inhibitor physostigmine. 3. The contraction to perivascular nerve stimulation(40V,40Hz, 0.5msec, 1min) was antagonised markedly by the muscarinic antagonist atropine. 4. The contraction to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1 min) was blocked by the neural blocker tetrodotoxin. 5. The contractions to perivascular nerve stimulation(40V. 40Hz, 0.5msec, 1 min) were not affected significantly by the -adrenergic antagonist phentolamine or - adrenergic antagonist propranolol. 6. The contractile response by the acetylcholine was increased by the pretreatment of cholinestrase inhibitor physostigmine. The finding suggest that it is powerful excitatory action linked to muscarinic receptor by cholinergic nerve in coronary artery of pig.

  • PDF

정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구 (Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies)

  • 권용현;권중원;박상영;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

Effects of Electric Stimulation with Static Stretching on Hamstrings Flexibility

  • Song, Won-Min;Seo, Hye-Jeong;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • 제27권3호
    • /
    • pp.164-168
    • /
    • 2015
  • Purpose: Flexibility has been considered one of the most important goals in rehabilitation. This study aimed to investigate the effect of transcutaneous electrical nerve stimulation (TENS) with the static stretching technique on the flexibility of hamstrings. Methods: Twenty-four subjects (15 men, 9 women) with limited hamstrings flexibility received three different intervention sessions in random order. The treatment sessions included static stretching (SS), static stretching with motor-level TENS (SS with motor TENS) and sensory-level TENS (SS with sensory TENS). All sessions of SS were performed in the straight-leg raise position for 30 seconds followed by rest for 15 seconds, in repetitions for 10 minutes using a belt. The TENS groups underwent TENS stimulation ($40{\mu}s$, 100 Hz) during the stretching for 10 minutes. Outcome measures were evaluated according to active knee extension (AKE) and recorded before the session and at 0, 3, 6, 9, and 15 minutes after the session. Results: There was significant improvement in hamstrings flexibility within all groups (p<0.05). SS with TENS (both sensory and motor) maintained significant increases in knee extension range of motion until 15 minutes post-treatment. In contrast, the SS-only group maintained significantly increased hamstrings flexibility only until 6 minutes post-treatment (p<0.05). Conclusion: Improvement in hamstrings flexibility with SS with TENS was maintained longer than with SS-only intervention. Electrical stimulation with stretching may be more effective than SS alone for increased duration of maintained hamstrings flexibility.

스트레칭과 사전원심성 운동이 지연성근육통에 미치는 영향 (The Effect of Stretching and Pre-eccentric exercise on Delayed Onset Muscle Soreness)

  • 정진규;류성선;김용남;강종호;김수현;황태연
    • 대한임상전기생리학회지
    • /
    • 제8권1호
    • /
    • pp.15-22
    • /
    • 2010
  • Purpose : This study examines the effects of pre-eccentric exercise and stretch ing to bicepsbrachii to prevent delayed onset muscle soreness and recovery of muscular function depending on the training intensity with 28 normal adults in their twenties. Methods : The subjects were divided into a control group, a group without any previous eccentric exercise, and a stretching group. Pre-eccentric exercise group conducted exercise with the intensity of 25% of maximal voluntary contraction. Pre-eccentric exercise and stretching was applied before to induce delayed onset muscle soreness and after, 24 hour post, 48 hour post, and 72 hour post. Measurements were conducted to examine pain and muscular function changes before, immediately after, and after inducing delayed onset muscle soreness. After inducing delayed onset muscle soreness, measurements were taken at the 24th hour, 48th hour, and 72nd hour. Results : The pre-eccentric exercise group and stretching group showed a significant difference from the control group by isometric contract ion power and mechanical pain threshold as a result of measuring delayed onset muscle soreness. Conclusion : From these results, electrical stimulation using presynaptic inhibition mechanism of transcutaneous electrical stimulation (TES) had positive effects for walking ability on inhibition of muscle tone in lower extremity. The motor level stimulation group experienced a more significant effect than the sensory level stimulation group. Therefore, the transcutaneous electrical stimulation (TES) is considered to be effective on walking ability increasing through inhibition of muscle tone in lower extremity for rehabilitation of post stroke hemiplegic patients.

간섭전류자극이 말초 혈류속도에 미치는 영향 (Effects of Interferential Current Stimulation on the Peripheral Blood Velocity in Healthy Subjects)

  • 박장성;이재형
    • The Journal of Korean Physical Therapy
    • /
    • 제11권2호
    • /
    • pp.37-42
    • /
    • 1999
  • The purpose of this study was to determine whether percutaneous interferential current stimulation on thoracic sympathetic ganglia with amplitude modulated frequency (AMF) $90\~100$ bps and subthreshold of muscle contraction for 10 minutes on peripheral blood flow velocity in healthy subjects. Thirty-seven healthy volunteers were assigned randomly into an experimental group (n=25) and a control group (n=12). the experimental group received interferential current stimulation with subthreshold of the muscle contraction of current at AMF $90\~100$ bps on $1st\~5th$ thoracic sympathetic ganglial region for 10 minutes. The control group received same handling and electode placement, but no current was applied. Using a Doppler blood flow meter, the radial arterial blood flow velocities and the pulse raters were determined for two-way analysis of variance for repeated measures on time and group. There were no significant difference between the two groups with respect to the changes in arterial blood flow velocity and pulse rate over the four measurement times. Interferential current stimulation did not change in mean blood flow velocity and pulse rate. We conclude that interferential current stimulation on the thoracic sympathetic ganglia, as used in this study, did not dilate peripheral artery. This results suggests that interferential current stimulation dose not alter the activtiy of sympathetic nerve.

  • PDF

Functional Electric Stimulation-assisted Biofeedback Therapy System for Chronic Hemiplegic Upper Extremity Function

  • Kim, Yeung Ki;Song, Jun Chan;Choi, Jae Won;Kim, Jang Hwan;Hwang, Yoon Tae
    • The Journal of Korean Physical Therapy
    • /
    • 제24권6호
    • /
    • pp.409-413
    • /
    • 2012
  • Purpose: Rehabilitative devices are used to enhance sensorimotor training protocols, for improvement of motor function in the hemiplegic limb of patients who have suffered a stroke. Sensorimotor integration feedback systems, included with these devices, are very good therapeutic frameworks. We applied this approach using electrical stimulation in stroke patients and examined whether a functional electric stimulation-assisted biofeedback therapy system could improve function of the upper extremity in chronic hemiplegia. Methods: A prototype biofeedback system was used by six subjects to perform a set of tasks with their affected upper extremity during a 30-minute session for 20 consecutive working days. When needed for a grasping or releasing movement of objects, the functional electrical stimulation (FES) stimulated the wrist and finger flexor or extensor and assisted the patients in grasping or releasing the objects. Kinematic data provided by the biofeedback system were acquired. In addition, clinical performance scales and activity of daily living skills were evaluated before and after application of a prototype biofeedback system. Results: Our findings revealed statistically significant gradual improvement in patients with stroke, in terms of kinematic and clinical performance during the treatment sessions, in terms of manual function test and the Purdue pegboard. However, no significant difference of the motor activity log was found. Conclusion: Hemiplegic upper extremity function of a small group of patients with chronic hemiparesis was improved through two weeks of training using the FES-assisted biofeedback system. Further research into the use of biofeedback systems for long-term clinical improvement will be needed.