• Title/Summary/Keyword: Electrical properties and measurements

Search Result 581, Processing Time 0.026 seconds

Electrical Properties of Both a Monolayer at the Air/Water Interface and a Langmuir-Blodgett Film Sandwiched Between Aluminum Electrodes (수면상의 고분자막과 알루미늄 전자간의 Langmuir-Blodgett막에 대한 전기적 특성)

  • Mitsumasa Iwamoto;Kang, Dou-Yol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • Electrical properties of both a monolayer at the air/water interface and Langmuir-Blodgett films sandwiched between aluminum electrodes are studied using a current-measuring technique. A change in induced charges on an electrode suspended in the air was measured in combination with the surface area isotherm in the electrical measurement of the monolayer. A change in induced charges on an electrode is measured while heating the sample in the electrical measurement of the LB films. From both measurements, we elucidated that a spontaneous polarization plays very important role in the electrical properties of both a monolayer at the air/water interface and LB films sandwiched between aluminum electrodes.

Experimental Measurement of Magnetic Properties of a Toroidal-type Bulk Electrical Steel using B-waveform Control (자속밀도 파형제어에 의한 토로이달 벌크 전기강의 자기특성 측정)

  • Eum, Young-Hwan;Koh, Chang-Seop;Hong, Sun-Ki;Shin, Pan-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.869-875
    • /
    • 2007
  • Magnetic properties of electrical steel are, in general. measured by using Epstein frame or single sheet tester (SST). These methods, however, require very strict regulation of a specimen in its size and shape. thus, can not be easily applied to various types of specimen. On the other hand, a ring-test method, which measures only the isotropic properties, can be easily applied to most cases because it requires a toroidal-type specimen of arbitrary size. This method, especially, is considered as an unique available method for a bulk-type specimen. In this paper, a ring-test method is developed, and applied to the measurement of magnetic properties of a bulk-type electrical steel with a toroidal-type specimen. In the measurement, the magnetic properties and iron losses are measured and compared with each other at the both sinusoidal magnetic flux density and sinusoidal magnetic field intensity conditions under 0.2Hz and 60Hz alternating magnetic fields excitation. Through experimental measurements, a sinusoidal magnetic flux density condition is proven appropriate for the measurement of magnetic properties, including iron loss characteristics, of electrical steels.

Cure Monitoring and Nondestructive Evaluation of Carbon Fiber/Epoxy Composites by the Measurements of Electrical Resistance and AE

  • Lee Sang-Il;Yoon Dong-Jin;Park Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.264-267
    • /
    • 2004
  • Cure monitoring and nondestructive characteristics of carbon fiber/epoxy composites were evaluated by the measurements of electrical resistance and acoustic emission (AE). Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when the fiber fracture occurred, whereas that of the electrodeposited composite increased relatively broadly up to infinity. As curing temperature increased. logarithmic electrical resistivity of steel fiber increased. On the other hand, electrical resistance of carbon fiber decreased due to the intrinsic electrical properties based on the band theory. The apparent modulus of the electrodeposited composite was higher than that of the untreated composite due to the improved interfacial shear strength (IFSS).

  • PDF

Nondestructive Measurement on Electrical Characteristics of Amorphous Silicon by Using the Laser Beam (레이저 빔을 이용한 비정질실리콘 전기적 특성의 비파괴 측정)

  • 박남천
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • A small electrical potential difference which appears on any solid body when subjected to illumination by a modulated light beam generated by laser is called photocharge voltage(PCV)[1,2]. This voltage is proportional to the induced change in the surface electrical charge and is capacitatively measured on various materials such as conductors, semiconductors, ceramics, dielectrics and biological objects. The amplitude of the detected signal depends on the type of material under investigation, and on the surface properties of the sample. In photocharge voltage spectroscopy measurements[3], the sample is illuminated by both a steady state monochromatic bias light and the pulsed laser. The monochromatic light is used to created a variation in the steady state population of trap levels in the surface and space charge region of semiconductor samples which does result in a change in the measured voltage. Using this technique the spatial variation of PCV can be utilized to evaluate the surface conditions of the sample and the variation of the PCV due to the monochromatic bias light are utilized to characterize the surface states. A qualitative analysis of the proposed measurement is present along with experimental results performed on amorphous silicon samples. The deposition temperature was varied in order to obtain samples with different structural, optical and electronic properties and measurements are related to the defect density in amorphous thin film.

  • PDF

Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku;Sung Yu-Taek;Han Mi-Sun;Lee Heon-Sang;Lee Sun-Jeong;Joo Jin-Soo;Kim Woo-Nyon
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2006
  • The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

Characteristics analysis of ZnO-Si-ZnO multi-layer thin films by pulsed laser deposition (펄스 레이저 증착법에 의해 제작된 ZnO-Si-ZnO 다층 박막의 특성 분석)

  • Kang, Hong-Seong;Kang, Jeong-Seok;Shim, Eun-Sub;Pang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1057-1059
    • /
    • 2002
  • ZnO-Si-ZnO multi-layer thin films have been deposited by pulsed laser deposition (PLD). And then, the films have been annealed at $300^{\circ}C$ in oxygen ambient pressure. Electrical properties of the films were improved slightly than ZnO thin film without Si layer. Also, the optical and structural properties changed by Si layer in ZnO thin film. The optical and structural properties of Si-doped ZnO thin films were characterized by PL(Photoluminescence) and XRD(X-ray diffraction method) respectively. Electrical properties were measured by van der Pauw Hall measurements.

  • PDF

Prediction Study of Heat-Affected Zone (HAZ) Properties in ERW Pipes using Hardness Distribution and Reverse Engineering Techniques (경도분포 및 역설계 기법을 활용한 ERW 파이프 열영향부(HAZ) 물성 예측 연구)

  • S. Lee;D. Hyun;S. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.321-328
    • /
    • 2023
  • To ensure driver safety, high-strength steel pipes are utilized in the chassis and internal structures design of automobiles. ERW(electric resistance welding) pipes, fabricated through welding at joints using electrical resistance, form a Heat-Affected Zone (HAZ) during the welding process. Due to characteristics such as increased hardness and reduced ductility compared to the base material, HAZ poses challenges in finite element analysis (FEA) for pipe shapes. In this study, for FEA considering HAZ properties, mechanical properties were measured through uniaxial tensile testing and digital image correlation (DIC) techniques after specimen fabrication. These measurements were validated using reverse engineering methods. Furthermore, hardness measurements and gaussian functions were employed to ascertain the hardness distribution within the HAZ, serving as a basis for subdividing the HAZ and modeling the pipe shape. To validate the effectiveness of the HAZ modeling approach, models were interpreted incorporating only base material properties and models incorporating average-calculated HAZ properties. Comparative analysis was performed, revealing that the model subdividing the HAZ based on hardness measurements closely approximated experimental values. This validation offered a methodology for HAZ modeling in FEA.

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung;Kim, Min Kyung;Kim, Yeon Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.556-560
    • /
    • 2016
  • Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

The Structural and Electrical Properties of Vanadium Oxide Thin Films as $O_2/(Ar+O_{2})$ ratio ($O_2/(Ar+O_{2})$비에 따른 바나듐 산화막의 구조적, 전기적 특성)

  • 최용남;최복길;최창규;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.729-732
    • /
    • 2001
  • In this study, the effect of oxygen partial pressure on the electrical properties of vanadium oxide(VO$_{x}$) thin films were investigated. The thin films were prepared by r.f. magnetron sputtering from V$_2$O$_{5}$ target in a gas mixture of argon and oxygen. The oxygen partial pressure ratio is changed from 0% to 8%. I-V characteristics were distinguished between linear and nonlinear region. In the low field region the conduction is due to Schottky emission, while at high fields it changes to Fowler-Nordheim tunneling type conduction. The conductivity measurements have shown an Arrhenius dependence of the conductivity on the temperature.ure.

  • PDF

Electrical properties of polymers by ion implantation (이온주입에 의한 폴리머의 전기특성 조사)

  • Yang, Dae-Jeong;Kim, Bo-Young;Lee, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.203-207
    • /
    • 2003
  • Ion implantation has been shown to significantly alter the surface properties of polymers. Polycarbonate(PC) and Polyimide(PI) were irradiated with 50keV $N^+$, $Xe^+$ ions to the fluences of $1{\times}10^{16}{\sim}3{\times}10^{17}\;cm^2$. The ion beam-induced modification of the electrical conductivity and the related structural features have been studied for polymers. The beam-induced chemical and structural modifications have been investigated by using X-ray Phooelectron Spectroscopy(XPS) and Fourier Transform-Infrared Spectroscopy(FT-IR), while the modification of the electrical properties was followed by performing a complete set of sheet resistance measurements. Samples irradiated at higher fluence showed a good conductivity, with a saturation value of $10^7{\Omega}/sq$. The XPS data demonstrate that the modification of the electrical properties is due to the progressive formation with increasing ion fluence of a dense amorphous carbon network, while PF-IR data reveal that material degradations through bond breaking are the main effects.

  • PDF