Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku (Department of Chemical and Biological Engineering, Korea University) ;
  • Sung Yu-Taek (Department of Chemical and Biological Engineering, Korea University) ;
  • Han Mi-Sun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee Heon-Sang (Research Park, LG Chemical Ltd.) ;
  • Lee Sun-Jeong (Department of Physics, Korea University) ;
  • Joo Jin-Soo (Department of Physics, Korea University) ;
  • Kim Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2006.08.01

Abstract

The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. S. O. Friend and J. J. Barber, U. S. Patent 5,611,964 (1997)
  3. Y. T. Sung, C. K. Kum, H. S. Lee, N. S. Byon, H. G. Yoon, and W. N. Kim, Polymer, 46, 5656 (2005) https://doi.org/10.1016/j.polymer.2005.04.075
  4. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006) https://doi.org/10.1016/j.polymer.2006.04.008
  5. M. S. P. Shaffer and A. H. Windle, Adv. Mater., 11, 937 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  6. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999) https://doi.org/10.1016/S0032-3861(99)00166-4
  7. P. Pötschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002) https://doi.org/10.1016/S0032-3861(02)00151-9
  8. P. Pötschk, M. Abdel-Goad, I. Alig, S. Dudkin, and D. Lellinger, Polymer, 45, 8863 (2004) https://doi.org/10.1016/j.polymer.2004.10.040
  9. M. Abdel-Goad and P. Potschke, J. Non-Newton. Fluid. Mech., 128, 2 (2005) https://doi.org/10.1016/j.jnnfm.2005.01.008
  10. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Marcromol. Res., 12, 384 (2004) https://doi.org/10.1007/BF03218416
  11. W. K. Park, J. H. Kim, S. S. Lee, J. Kim, G. W. Lee, and M. Park, Macromol. Res., 13, 206 (2005) https://doi.org/10.1007/BF03219053
  12. S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules, 36, 5187 (2003) https://doi.org/10.1021/ma021263b
  13. J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B, 55, R4921 (1997) https://doi.org/10.1103/PhysRevB.55.R4921
  14. I. Balberg, Philos. Mag. B, 56, 991 (1987) https://doi.org/10.1080/13642818708215336
  15. N. F. Colaneri and L. W. Shacklette, IEEE Trans. Instrum. Meas., 41, 291 (1992) https://doi.org/10.1109/19.137363
  16. J. Joo and C. Y. Lee, J. Appl. Phys., 88, 513 (2000) https://doi.org/10.1063/1.373688