• Title/Summary/Keyword: Electrical impedance tomography

Search Result 92, Processing Time 0.023 seconds

An Algorithm for Computing Eigen Current of Forward Model of Mammography Geometry for EIT (매모그램 구조의 전기저항 영상법에서 정방향 모델의 고유전류 계산 알고리즘)

  • Choi, Myoung Hwan
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.91-96
    • /
    • 2007
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present standard for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. A forward model of a simplified mammography geometry for EIT imaging was proposed earlier. In this paper, we propose an iterative algorithm for computing the current pattern that will be applied to the electrodes. The current pattern applied to the electrodes influences the voltages measured on the electrodes. Since the measured voltage data is going to be used in the impedance imaging computation, it is desirable to apply currents that result in the largest possible voltage signal. We compute the eigenfunctions for a homogenous medium that will be applied as current patterns to the electrodes. The algorithm for the computation of the eigenfunctions is presented. The convergence of the algorithm is shown by computing the eigencurrent of the simplified mammography geometry.

  • PDF

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo;Lee, Junhyeong;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.563-583
    • /
    • 2021
  • Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.

역전도체 문제와 전기 임피던스 영상기법

  • 강현배;서진근
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.333-369
    • /
    • 2001
  • 칼데론 문제와 유한번 측정 역전도체 문제에 대한 중요한 결과들을 설명하고, 그 응용으로서 전기임피던스 영상기법에 대하여 설명한다.

  • PDF

A Model of a Simplified Mammography Geometry for Breast Cancer Imaging with EIT (전기임피던스 단층촬영법을 위한 단순화된 매모그래피 구조의 모델)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.221-226
    • /
    • 2006
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present "gold standard" for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. This paper presents a forward model of a simplified mammography geometry for EIT imaging. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and Validated by experiment using a phantom tank.

  • PDF

Image Reconstruction using Modified Iterative Landweber Method in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 수정된 반복 Landweber 방법을 이용한 영상 복원)

  • Kim, Bong-Seok;Kim, Ji-Hoon;Kim, Sin;Kim, Kyung-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.36-44
    • /
    • 2012
  • Electrical impedance tomography is a relatively new imaging modality in which the internal conductivity (or resistivity) distribution of a object is reconstructed based on the injected currents and measured voltages through the electrodes placed on the surface of the object. In this paper, it is assumed that the relationship between the resistivity distribution and the resistance of electrodes is linear. From this linear relation, the weighting matrix can be obtained and modified iterative Landweber method is applied to estimate the internal resistivity distribution. Additionally, to accelerate the convergence rate and improve the spatial resolution of the reconstructed image, optimal step lengths for the iterative Landweber method are computed from the objective function in the least-square sense. The numerical experiments have been performed to illustrate the superior reconstruction performance of the proposed scheme.

Multi-Frequency Electrical Impedance Tomography System (다주파수 임피던스 단층촬영 시스템)

  • Oh, Tong-In;Cho, Seong-Phil;Kim, Sang-Min;Koo, Hwan;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.66-74
    • /
    • 2007
  • We have developed a multi-channel, multi-frequency EIT system with operating frequency of 10Hz to 500KHz. The number of digital voltmeters using phase-sensitive demodulation can be varied from 8 to 64 and we found that 16 and 32-channels are most practical. This paper describes the design, implementation, and construction of 16 and 32-channel systems. The performance of the system was thoroughly tested and we found that CMRR of the developed voltmeter is about 85dB with $100{\Omega}$ unbalancing series resistor. The SNR is greater than 99.6dB and the output impedance of the constant current source is $1{\Omega}W$ at least for all frequencies. Imaging experiments using a banana with frequency-dependent conductivity and permittivity show that frequency-difference imaging is possible using the developed system. Future works of animal and human experiments are discussed.

Measurement errors of the EIT systems using a phantom and conductive yarns (전기임피던스 단층촬영법을 이용한 외란위치 계측오차)

  • Park, Ji Su;Koo, Sang-Mo;Kim, Choong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1430-1435
    • /
    • 2016
  • Electrical impedance tomography (EIT) has been applied to measure the location of external disturbance using a phantom and conductive yarns. According to the test results, the addition of carbon nanotube particles into the phantom does not show remarkable improvement in location errors. On the other hand combined fabric, conductive yarns with fabric, and non-woven fabric, were added to evaluate its performance as a fabric sensor. The combined fabric resulted in a decrease of 21.5% in the circumferential location error and a decrease of 50% in the radial location error, compared to those of the yarns. Additionally, it was revealed that the measurement error is almost linearly proportional to the conductivity of the phantom liquid and resistance of the conductive yarns. The combined fabric can be a promising material for fabric sensors in sports utilities and medical devices.

Phase boundary estimation with effective initial guess in electrical impedance tomography (전기 임피던스 단층촬영 기법에서 효과적인 초기치 설정을 통한 상 경계 추정)

  • Kim, Bong-Seok;Kim, Sin;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.211-216
    • /
    • 2012
  • In the phase boundary estimation problem, the estimation performance depends on the initial guess. However, there is no information on the number of bubbles and those positions for the initial guess in real flows. Therefore, it is very important to set appropriate initial guesses from prior information. In this paper, in order to set initial guesses for estimating the phase boundaries in two-phase flows, first, unknown resistivity distribution was estimated using the difference reconstruction method. After that, an adaptive threshold value was automatically computed using intermodes method. Based on this value, the number of bubbles and the initial position were determined. The numerical experiments have been performed to evaluate the estimation performance of the proposed method.

Extended Kalman Filter Approach to Dynamic Electrical Impedance Tomography with Internal Electrodes

  • S.I. Kang;Kim, K.Y.;Kim, H.C.;Kim, M.C.;Kim, S.;Lee, H.J.;Lee, Y.J.;W.C. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.39.1-39
    • /
    • 2001
  • Impedance tomography (EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents through the electrodes and induced voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set of independent measurement data, In doing so, the inverse problem is treated as the nonlinear state estimation problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the known internal structure of the object ...

  • PDF