Browse > Article
http://dx.doi.org/10.12989/sem.2021.80.5.563

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review  

Park, Kundo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Lee, Junhyeong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Ryu, Seunghwa (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.80, no.5, 2021 , pp. 563-583 More about this Journal
Abstract
Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.
Keywords
composite materials; damage detection; electrical impedance tomography; electrical resistance measurement; IR thermography;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tian, G.Y., Gao, Y., Li, K., Wang, Y., Gao, B. and He, Y. (2016), "Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization", Sensor., 16(6), 843. https://doi.org/10.3390/s16060843.   DOI
2 Touhara, H., Yonemoto, A., Yamamoto, K., Komiyama, S., Kawasaki, S., Okino, F., Yanagisawa, T. and Endo, M. (2004), "Fluorination of cup-stacked carbon nanotubes, structures and properties", MRS Online Proc. Lib., 858(1), 40-45.
3 Tumanski, S. (2006), Principles of Electrical Measurement, CRC Press.
4 Umar, M.Z., Vavilov, V., Abdullah, H. and Ariffin, A.K. (2016), "Ultrasonic infrared thermography in non-destructive testing: A review", Russ. J. Nondestr. Test., 52(4), 212-219. https://doi.org/10.1134/S1061830916040082.   DOI
5 Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P. (1998), "Tikhonov regularization and prior information in electrical impedance tomography", IEEE Tran. Med. Imag., 17(2), 285-293. https://doi.org/10.1109/42.700740.   DOI
6 Vauhkonen, P.J., Vauhkonen, M., Savolainen, T. and Kaipio, J.P. (1999), "Three-dimensional electrical impedance tomography based on the complete electrode model", IEEE Tran. Biomed. Eng., 46(9), 1150-1160. https://doi.org/10.1109/10.784147.   DOI
7 Vavilov, V.P. and Burleigh, D.D. (2015), "Review of pulsed thermal NDT: Physical principles, theory and data processing", NDT E Int., 73, 28-52. https://doi.org/10.1016/j.ndteint.2015.03.003.   DOI
8 Ma, P.C., Tang, B.Z. and Kim, J.K. (2008), "Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites", Carbon, 46(11), 1497-1505. https://doi.org/10.1016/j.carbon.2008.06.048.   DOI
9 Meola, C. and Carlomagno, G.M. (2004), "Recent advances in the use of infrared thermography", Measure. Sci. Technol., 15(9), R27-R58. https://doi.org/10.1088/0957-0233/15/9/r01.   DOI
10 Milovanovic, B. and Banjad Pecur, I. (2016), "Review of active IR thermography for detection and characterization of defects in reinforced concrete", J. Imag., 2(2), 11. https://doi.org/10.3390/jimaging2020011.   DOI
11 Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J. and Jayakumar, T. (2013), "Infrared thermography for condition monitoring-A review", Infrar. Phys. Technol., 60, 35-55. https://doi.org/10.1016/j.infrared.2013.03.006.   DOI
12 Park, K., Scaccabarozzi, D., Sbarufatti, C., Jimenez-Suarez, A., Urena, A., Ryu, S. and Libonati, F. (2020), "Coupled health monitoring system for CNT-doped self-sensing composites", Carbon, 166, 193-204. https://doi.org/10.1016/j.carbon.2020.04.060.   DOI
13 Hamilton, S.J., Hanninen, A., Hauptmann, A. and Kolehmainen, V. (2019), "Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT)", Physiolog. Measure., 40(7), 074002. https://doi.org/10.1088/1361-6579/ab21b2.   DOI
14 Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z. and Kim, J.K. (2007), "Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes", Adv. Funct. Mater., 17(16), 3207-3215. https://doi.org/10.1002/adfm.200700065.   DOI
15 Pieczonka, L., Szwedo, M. and Uhl, T. (2011), "Vibrothermography-measurement system development and testing", Diagnostyka, 61-66.   DOI
16 Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M. and Yoon, Y. (2015), "Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review", Separat. Purific. Technol., 156, 861-874. https://doi.org/10.1016/j.seppur.2015.11.002.   DOI
17 Aranburu, N., Otaegi, I. and Guerrica-Echevarria, G. (2019), "Using an ionic liquid to reduce the electrical percolation threshold in biobased thermoplastic polyurethane/graphene nanocomposites", Polym., 11(3), 435. https://doi.org/10.3390/polym11030435.   DOI
18 Badr, J., Fargier, Y., Palma-Lopes, S., Deby, F., Balayssac, J.P., Delepine-Lesoille, S., Cottineau, L.M. and Villain, G. (2019), "Design and validation of a multi-electrode embedded sensor to monitor resistivity profiles over depth in concrete", Constr. Build. Mater., 223, 310-321. https://doi.org/10.1016/j.conbuildmat.2019.06.226.   DOI
19 Coleman, J.N., Khan, U. and Gun'ko, Y.K. (2006), "Mechanical reinforcement of polymers using carbon nanotubes", Adv. Mater., 18(6), 689-706. https://doi.org/10.1002/adma.200501851.   DOI
20 Clyne, T. and Hull, D. (2019), An Introduction to Composite Materials, Cambridge University Press.
21 Colombo, C., Libonati, F. and Vergani, L. (2012), "Fatigue damage in GFRP", Int. J. Struct. Integ., 3(4), 424-440. https://doi.org/10.1108/17579861211281218.   DOI
22 Dai, H., Gallo, G.J., Schumacher, T. and Thostenson, E.T. (2016a), "A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography", J. Nondestruct. Eval., 35(2), 26. https://doi.org/10.1007/s10921-016-0341-0.   DOI
23 Chung, D.D. (2010), Composite Materials: Science and Applications, Springer Science & Business Media.
24 Rashetnia, R., Alla, O.K., Gonzalez-Berrios, G., Seppanen, A. and Pour-Ghaz, M. (2018), "Electrical resistance tomography-based sensing skin with internal electrodes for crack detection in large structures", Mater. Eval., 76(10), 1405-1413.
25 Planck, M. (2013), The Theory of Heat Radiation, Courier Corporation.
26 Poelman, G., Hedayatrasa, S., Segers, J., Van Paepegem, W. and Kersemans, M. (2020), "Adaptive spectral band integration in flash thermography: Enhanced defect detectability and quantification in composites", Compos. Part B: Eng., 202, 108305. https://doi.org/10.1016/j.compositesb.2020.108305.   DOI
27 Prakash, R. (2012), Infrared Thermography, BoD-Books on Demand.
28 Sandler, J., Kirk, J., Kinloch, I., Shaffer, M. and Windle, A. (2003), "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites", Polym., 44(19), 5893-5899. https://doi.org/10.1016/S0032-3861(03)00539-1.   DOI
29 Kim, K.S., Bae, D.J., Kim, J.R., Park, K.A., Lim, S.C., Kim, J.J., Choi, W.B., Park, C.Y. and Lee, Y.H. (2002), "Modification of electronic structures of a carbon nanotube by hydrogen functionalization", Adv. Mater., 14(24), 1818-1821. https://doi.org/10.1002/adma.200290008.   DOI
30 Kessler, S.S. (2002), "Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems", Massachusetts Institute of Technology.
31 Ko, J. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021.   DOI
32 Kumar, S.P., Sriraam, N., Benakop, P. and Jinaga, B. (2010), "Reconstruction of brain electrical impedance tomography images using particle swarm optimization", 2010 5th International Conference on Industrial and Information Systems, 339-342.
33 Park, H., Lee, H., Park, K., Mo, S. and Kim, J. (2019), "Deep neural network approach in electrical impedance tomography-based real-time soft tactile sensor", 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7447-7452.
34 Balaji, R. and Sasikumar, M. (2017), "Graphene based strain and damage prediction system for polymer composites", Compos. Part A: Appl. Sci. Manuf., 103, 48-59. https://doi.org/10.1016/j.compositesa.2017.09.006.   DOI
35 Riegert, G., Zweschper, T. and Busse, G. (2004), "Lockin thermography with eddy current excitation", Quant. InfraRed Thermog. J., 1(1), 21-32. https://doi.org/10.3166/qirt.1.21-32   DOI
36 Monti, M., Natali, M., Petrucci, R., Kenny, J.M. and Torre, L. (2011), "Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin", Polym. Compos., 32(5), 766-775. https://doi.org/10.1002/pc.21098.   DOI
37 Cheney, M., Isaacson, D., Newell, J.C., Simske, S. and Goble, J. (1990), "NOSER: An algorithm for solving the inverse conductivity problem", Int. J. Imag. Syst. Technol., 2(2), 66-75. https://doi.org/10.1002/ima.1850020203.   DOI
38 Lestari, W., Pinto, B., La Saponara, V., Yasui, J. and Loh, K.J. (2016), "Sensing uniaxial tensile damage in fiber-reinforced polymer composites using electrical resistance tomography", Smart Mater. Struct., 25(8), 085016.   DOI
39 Li, C. and Chou, T.W. (2008), "Modeling of damage sensing in fiber composites using carbon nanotube networks", Compos. Sci. Technol., 68(15), 3373-3379. https://doi.org/10.1016/j.compscitech.2008.09.025.   DOI
40 Naghashpour, A. and Van Hoa, S. (2013), "A technique for real-time detection, location and quantification of damage in large polymer composite structures made of electrically nonconductive fibers and carbon nanotube networks", Nanotechnol., 24(45), 455502.   DOI
41 Pitarresi, G. and Patterson, E. (2003), "A review of the general theory of thermoelastic stress analysis", J. Strain Anal. Eng. Des., 38(5), 405-417. https://doi.org/10.1243/03093240360713469.   DOI
42 Mitsheal, A., Daerefa-a, Diogo, M., Opukuro, D.W. and George, H. (2017), "A review of structural health monitoring techniques as applied to composite structures", Struct. Durab. Hlth. Monit., 11(2), 91-147. https://doi.org/10.3970/sdhm.2017.011.091.   DOI
43 Lim, S.P. and Haron, H. (2013), "Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions", 2013 IEEE Conference on Open Systems (ICOS), 41-46, December.
44 Girifalco, L.A., Hodak, M. and Lee, R.S. (2000), "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential", Phys. Rev. B, 62(19), 13104. https://doi.org/10.1103/PhysRevB.62.13104.   DOI
45 Loh, K.J., Hou, T.C., Lynch, J.P. and Kotov, N.A. (2009), "Carbon nanotube sensing skins for spatial strain and impact damage identification", J. Nondestruct. Eval., 28(1), 9-25. https://doi.org/10.1007/s10921-009-0043-y.   DOI
46 Saleh, N.B., Pfefferle, L.D. and Elimelech, M. (2010), "Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes", Environ. Sci. Technol., 44(7), 2412-2418. https://doi.org/10.1021/es903059t.   DOI
47 Guillaumat, L., Batsale, J.C. and Mourand, D. (2004), "Real time infra-red image processing for the detection of delamination in composite plates", Compos. Part A: Appl. Sci. Manuf., 35(7), 939-944. https://doi.org/10.1016/j.compositesa.2004.01.021.   DOI
48 Li, J., Sham, M.L., Kim, J.K. and Marom, G. (2007), "Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites", Compos. Sci. Technol., 67(2), 296-305. https://doi.org/10.1016/j.compscitech.2006.08.009.   DOI
49 Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008), "Processable aqueous dispersions of graphene nanosheets", Nat. Nanotechnol., 3(2), 101-105. https://doi.org/10.1038/nnano.2007.451.   DOI
50 Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compo. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.   DOI
51 Toscano, C., Meola, C., Iorio, M. and Carlomagno, G. (2012), "Porosity and inclusion detection in CFRP by infrared thermography", Adv. Opt. Technol., 2012, Article ID 765953, 6. https://doi.org/10.1155/2012/765953.   DOI
52 Walle, G. and Netzelmann, U. (2006), "Thermographic crack detection in ferritic steel components using inductive heating", Proc. 9th ECNDT Berlin, 25, 1-10.
53 Wiecek, B. (2006), "Review on thermal image processing for passive and active thermography", 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 686-689.
54 Gao, L., Chou, T.W., Thostenson, E.T. and Zhang, Z. (2010), "A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes", Carbon, 48(13), 3788-3794. https://doi.org/10.1016/j.carbon.2010.06.041.   DOI
55 Tian, G.Y., Wilson, J., Cheng, L., Almond, D.P., Kostson, E. and Weekes, B. (2011), "Pulsed eddy current thermography and applications", New Developments in Sensing Technology for Structural Health Monitoring, Springer, Berlin, Heidelberg.
56 Sham, M.L., Li, J., Ma, P.C. and Kim, J.K. (2009), "Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review", J. Compos. Mater., 43(14), 1537-1564. https://doi.org/10.1177/0021998308337740.   DOI
57 Sih, G. and Chen, E. (1973), "Fracture analysis of unidirectional composites", J. Compos. Mater., 7(2), 230-244. https://doi.org/10.1177/002199837300700207.   DOI
58 Spillman Jr, W. (1989), "Fiber optic sensors for composite monitoring", Fiber Opt. Smart Struct. Skin., 986, 6-11. https://doi.org/10.1117/12.948882.   DOI
59 Tallman, T.N., Gungor, S., Wang, K. and Bakis, C.E. (2015), "Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler", Struct. Hlth. Monit., 14(1), 100-109. https://doi.org/10.1177/1475921714554142.   DOI
60 Talreja, R. and Singh, C.V. (2012), Damage and Failure of Composite Materials, Cambridge University Press.
61 Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.   DOI
62 Yang, R. and He, Y. (2016), "Optically and non-optically excited thermography for composites: A review", Infrar. Phys. Technol., 75, 26-50. https://doi.org/10.1016/j.infrared.2015.12.026.   DOI
63 Harris, B. (2003), Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, Woodhead Publishing.
64 Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution properties of single-walled carbon nanotubes", Sci., 282(5386), 95-98. https://doi.org/10.1126/science.282.5386.95.   DOI
65 Gao, L., Chou, T.W., Thostenson, E.T., Zhang, Z. and Coulaud, M. (2011), "In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks", Carbon, 49(10), 3382-3385. https://doi.org/10.1016/j.carbon.2011.04.003.   DOI
66 Gao, L., Thostenson, E.T., Zhang, Z. and Chou, T.W. (2009), "Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites", Carbon, 47(5), 1381-1388. https://doi.org/10.1016/j.carbon.2009.01.030.   DOI
67 Wilson, J., Tian, G., Abidin, I., Yang, S. and Almond, D. (2010), "Pulsed eddy current thermography: system development and evaluation", Insight-Non-Destruct. Test. Condit. Monit., 52(2), 87-90. https://doi.org/10.1784/insi.2010.52.2.87   DOI
68 Wu, J., Zhu, J., Xia, H., Liu, C., Huang, X. and Tian, G.Y. (2019), "DC-biased magnetization based eddy current thermography for subsurface defect detection", IEEE Tran. Indus. Inform., 15(12), 6252-6259. https://doi.org/10.1109/TII.2019.2891107.   DOI
69 Xia, Z. and Curtin, W. (2007), "Modeling of mechanical damage detection in CFRPs via electrical resistance", Compos. Sci. Technol., 67(7-8), 1518-1529. https://doi.org/10.1016/j.compscitech.2006.07.017.   DOI
70 Yazdani, H., Hatami, K., Khosravi, E., Harper, K. and Grady, B.P. (2014), "Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading", Carbon, 79, 393-405. https://doi.org/10.1016/j.carbon.2014.07.082.   DOI
71 Yee, M.J., Mubarak, N., Abdullah, E., Khalid, M., Walvekar, R., Karri, R.R., Nizamuddin, S. and Numan, A. (2019), "Carbon nanomaterials based films for strain sensing application-A review", Nano Struct. Nano Object., 18, 100312. https://doi.org/10.1016/j.nanoso.2019.100312.   DOI
72 Bauhofer, W. and Kovacs, J.Z. (2009), "A review and analysis of electrical percolation in carbon nanotube polymer composites", Compos. Sci. Technol., 69(10), 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018.   DOI
73 Polo-Luque, M., Simonet, B. and Valcarcel, M. (2013), "Functionalization and dispersion of carbon nanotubes in ionic liquids", TrAC Trend. Anal. Chem., 47, 99-110. https://doi.org/10.1016/j.trac.2013.03.007.   DOI
74 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500.   DOI
75 Qu, S., Dai, Y., Zhang, D., Li, Q., Chou, T.-W. and Lyu, W. (2020), "Carbon nanotube film based multifunctional composite materials: an overview", Funct. Compos. Struct., 2(2), 022002. https://doi.org/10.1088/2631-6331/ab9752.   DOI
76 Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A. and Kostopoulos, V. (2015), "Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites", Compos. Part B: Eng., 76, 149-158. https://doi.org/10.1016/j.compositesb.2015.02.022.   DOI
77 Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D. and Rinzler, A.G. (1999), "Carbon nanotube actuators", Sci., 284(5418), 1340-1344. https://doi.org/10.1126/science.284.5418.1340.   DOI
78 Beaumont, P.W. (1979), "Fracture mechanisms in fibrous composites", Fracture Mechanics, Pergamon.
79 Breitenstein, O. and Langenkamp, M. (2003), "Lock-in thermography", Basics and Use for Functional Diagnostics of Electronics Components, Springer.
80 Vadlamani, V.K., Chalivendra, V.B., Shukla, A. and Yang, S. (2012), "Sensing of damage in carbon nanotubes and carbon black-embedded epoxy under tensile loading", Polym. Compos., 33(10), 1809-1815. https://doi.org/10.1002/pc.22326.   DOI
81 Vavilov, V., Swiderski, W. and Derusova, D. (2015), "Ultrasonic and optical stimulation in IR thermographic NDT of impact damage in carbon composites", Quant. InfraRed Thermog. J., 12(2), 162-172. https://doi.org/10.1080/17686733.2015.1046678   DOI
82 Zenzinger, G., Bamberg, J., Satzger, W. and Carl, V. (2007), "Thermographic crack detection by eddy current excitation", Nondestr. Test. Eval., 22(2-3), 101-111. https://doi.org/10.1080/10589750701447920.   DOI
83 Russo, S., Nefti-Meziani, S., Carbonaro, N. and Tognetti, A. (2017), "A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors", Sensor., 17(9), 1999. https://doi.org/10.3390/s17091999.   DOI
84 Huth, S., Breitenstein, O., Huber, A., Dantz, D., Lambert, U. and Altmann, F. (2002), "Lock-in IR-thermography-A novel tool for material and device characterization. diffusion and defect data part B solid state phenomena", Diffusion and Defect Data Part B Solid State Phenomena, 741-746, Scitec Publications, January.
85 Tran, Q.H., Han, D., Kang, C., Haldar, A. and Huh, J. (2017), "Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging", Sensor., 17(8), 1718. https://doi.org/10.3390/s17081718.   DOI
86 Yazdani, H., Smith, B.E. and Hatami, K. (2016), "Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties", Compos. Part A: Appl. Sci. Manuf., 82, 65-77. https://doi.org/10.1016/j.compositesa.2015.12.005.   DOI
87 Zalameda, J. and Winfree, W. (2018), "Detection and characterization of damage in quasi-static loaded composite structures using passive thermography", Sensor., 18(10), 3562. https://doi.org/10.3390/s18103562.   DOI
88 Rana, S., Alagirusamy, R. and Joshi, M. (2009), "A review on carbon epoxy nanocomposites", J. Reinf. Plast. Compos., 28(4), 461-487. https://doi.org/10.1177/0731684407085417.   DOI
89 Rantala, J., Wu, D., Salerno, A. and Busse, G. (1996), "Lock-in thermography with mechanical loss angle heating at ultrasonic frequencies", Proc. Int Conf. Quantitative InfraRed Thermography (QIRT96), 2-5.
90 Roche, J.M., Balageas, D., Lamboul, B., Bai, G., Passilly, F., Mavel, A. and Grail, G. (2013), "Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing", AIP Conf. Proc., 1511(1), 555-562. https://doi.org/10.1063/1.4789096.
91 Radamson, H.H. (2017), Graphene, Springer Handbook of Electronic and Photonic Materials, Springer, Cham.
92 Groo, L., Nasser, J., Zhang, L., Steinke, K., Inman, D. and Sodano, H. (2020), "Laser induced graphene in fiberglass-reinforced composites for strain and damage sensing", Compos. Sci. Technol., 199, 108367. https://doi.org/10.1016/j.compscitech.2020.108367.   DOI
93 Dai, H., Gallo, G.J., Schumacher, T. and Thostenson, E.T. (2016b), "A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography", J. Nondestruct. Eval., 35(2), 1-15. https://doi.org/10.1007/s10921-016-0341-0.   DOI
94 Cerniglia, D. and Montinaro, N. (2018), "Defect detection in additively manufactured components: Laser ultrasound and laser thermography comparison", Procedia Struct. Integ., 8, 154-162. https://doi.org/10.1016/j.prostr.2017.12.016.   DOI
95 Chang, F.K. (1998), "Structural health monitoring: A summary report on the first stanford workshop on structural health monitoring, September 18-20, 1997", Stanford University, CA.
96 Holzinger, M., Steinmetz, J., Samaille, D., Glerup, M., Paillet, M., Bernier, P., Ley, L. and Graupner, R. (2004), "[2+ 1] cycloaddition for cross-linking SWCNTs", Carbon, 42(5-6), 941-947. https://doi.org/10.1016/j.carbon.2003.12.019.   DOI
97 Hou, T.C., Loh, K.J. and Lynch, J.P. (2007), "Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications", Nanotechnol., 18(31), 315501. https://doi.org/10.1088/0957-4484/18/31/315501.   DOI
98 Hou, T.C. and Lynch, J.P. (2009), "Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures", J. Intel. Mater. Syst. Struct., 20(11), 1363-1379. https://doi.org/10.1177/1045389X08096052.   DOI
99 Huang, J.C. (2002), "Carbon black filled conducting polymers and polymer blends", Adv. Polym. Technol.: J. Polym. Proc. Inst., 21(4), 299-313. https://doi.org/10.1002/adv.10025.   DOI
100 Stanley, P. and Chan, W. (1988), "The application of thermoelastic stress analysis techniques to composite materials", J. Strain Anal. Eng. Des., 23(3), 137-143. https://doi.org/10.1243/03093247V233137.   DOI
101 Guo, X. and Vavilov, V. (2013), "Crack detection in aluminum parts by using ultrasound-excited infrared thermography", Infrar. Phys. Technol., 61, 149-156. https://doi.org/10.1016/j.infrared.2013.08.003   DOI
102 Hallaji, M. and Pour-Ghaz, M. (2014), "A new sensing skin for qualitative damage detection in concrete elements: Rapid difference imaging with electrical resistance tomography", NDT E Int., 68, 13-21. https://doi.org/10.1016/j.ndteint.2014.07.006.   DOI
103 Fish, J. (2011), "Multiscale modeling and simulation of composite materials and structures", Eds. R. de Borst and E. Ramm, Multiscale Methods in Computational Mechanics: Progress and Accomplishments, 215-231, Springer, Netherlands.
104 Zhang, D., Ye, L., Wang, D., Tang, Y., Mustapha, S. and Chen, Y. (2012), "Assessment of transverse impact damage in GF/EP laminates of conductive nanoparticles using electrical resistivity tomography", Compos. Part A: Appl. Sci. Manuf., 43(9), 1587-1598. https://doi.org/10.1016/j.compositesa.2012.04.012.   DOI
105 Zhou, L., Forman, H.J., Ge, Y. and Lunec, J. (2017), "Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion", Toxicol. Vitro, 42, 292-298. https://doi.org/10.1016/j.tiv.2017.04.027.   DOI
106 Sandler, J., Shaffer, M., Prasse, T., Bauhofer, W., Schulte, K. and Windle, A. (1999), "Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties", Polym., 40(21), 5967-5971. https://doi.org/10.1016/S0032-3861(99)00166-4.   DOI
107 Douville, N.J., Tung, Y.C., Li, R., Wang, J.D., El-Sayed, M.E.H. and Takayama, S. (2010), "Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers", Anal. Chem., 82(6), 2505-2511. https://doi.org/10.1021/ac9029345.   DOI
108 Dresselhaus, G., Dresselhaus, M.S. and Saito, R. (1998), Physical Properties of Carbon Nanotubes, World scientific.
109 Eldar, Y.C. and Oppenheim, A.V. (2003), "Covariance shaping least-squares estimation", IEEE Tran. Signal Pr., 51(3), 686-697. https://doi.org/10.1109/TSP.2002.808125.   DOI
110 Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H. and Thomas, R.L. (2000). "IR imaging of cracks excited by an ultrasonic pulse", Thermosense XXII, 4020, 182-185, International Society for Optics and Photonics, March.
111 Dattoma, V., Marcuccio, R., Pappalettere, C. and Smith, G.M. (2001), "Thermographic investigation of sandwich structure made of composite material", NDT E Int., 34(8), 515-520. https://doi.org/10.1016/S0963-8695(00)00082-7.   DOI
112 Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Sci., 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637.   DOI
113 Jin, F.L., Li, X. and Park, S.J. (2015), "Synthesis and application of epoxy resins: A review", J. Indus. Eng. Chem., 29, 1-11. https://doi.org/10.1016/j.jiec.2015.03.026.   DOI
114 Jo, Y., Lee, C. and Yoo, J.H. (2013), "Study on applicability of passive infrared thermography analysis for blistering detection of stone cultural heritage", J. Korean Conserv. Sci. Cult. Proper., 29(1), 55-67. https://doi.org/10.12654/JCS.2013.29.1.06.   DOI
115 He, Z., Wang, H., He, Y., Zhang, G., Wang, J., Zou, G. and Chady, T. (2019), "Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer", IEEE Sensor. J., 20(1), 328-336. https://doi.org/10.1109/JSEN.2019.2941077.   DOI
116 Hallaji, M., Seppanen, A. and Pour-Ghaz, M. (2014), "Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete", Smart Mater. Struct., 23(8), 085001. https://doi.org/10.1088/0964-1726/23/8/085001.   DOI
117 Hamilton, S.J. and Hauptmann, A. (2018), "Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks", IEEE Tran. Med. Imag., 37(10), 2367-2377. https://doi.org/10.1109/TMI.2018.2828303.   DOI
118 Han, X., Li, W., Zeng, Z., Favro, L. and Thomas, R. (2002), "Acoustic chaos and sonic infrared imaging", Appl. Phys. Lett., 81(17), 3188-3190. https://doi.org/10.1063/1.1516240.   DOI
119 Hao, B., Ma, Q., Yang, S., Mader, E. and Ma, P.C. (2016), "Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating", Compos. Sci. Technol., 129, 38-45. https://doi.org/10.1016/j.compscitech.2016.04.012.   DOI
120 Ghaednia, H., Owens, C.E., Roberts, R., Tallman, T.N., Hart, A.J. and Varadarajan, K.M. (2020), "Interfacial load monitoring and failure detection in total joint replacements via piezoresistive bone cement and electrical impedance tomography", Smart Mater. Struct., 29(8), 085039.   DOI
121 Giordano, M., Calabro, A., Esposito, C., D'Amore, A. and Nicolais, L. (1998), "An acoustic-emission characterization of the failure modes in polymer-composite materials", Compos. Sci. Technol., 58(12), 1923-1928. https://doi.org/10.1016/S0266-3538(98)00013-X.   DOI
122 Gleiter, A., Riegert, G., Zweschper, T. and Busse, G. (2007), "Ultrasound lock-in thermography for advanced depth resolved defect selective imaging", Insight-Non-Destruct. Test. Condit. Monit., 49(5), 272. https://doi.org/10.1784/INSI.2007.49.5.272.   DOI
123 Gopi, J.A., Patel, S.K., Chandra, A.K. and Tripathy, D.K. (2011), "SBR-clay-carbon black hybrid nanocomposites for tire tread application", J. Polym. Res., 18(6), 1625-1634. https://doi.org/10.1007/s10965-011-9567-9.   DOI
124 Groo, L., Nasser, J., Inman, D. and Sodano, H. (2021), "Laser induced graphene for in situ damage sensing in aramid fiber reinforced composites", Compos. Sci. Technol., 201, 108541. https://doi.org/10.1016/j.compscitech.2020.108541.   DOI
125 Ghaednia, H., Owens, C.E., Keiderling, L.E., Varadarajan, K.M., Hart, A.J., Schwab, J.H. and Tallman, T.T. (2020), "Is machine learning able to detect and classify failure in piezoresistive bone cement based on electrical signals?", arXiv preprint arXiv:2010, 12147.
126 Shepard, S.M. (2007), "Flash thermography of aerospace composites", IV Conferencia Panamericana de END Buenos Aires, 7, 26.
127 Wu, D. and Busse, G. (1998), "Lock-in thermography for nondestructive evaluation of materials", Revue Generale de Thermique, 37(8), 693-703. https://doi.org/10.1016/S0035-3159(98)80047-0.   DOI
128 Chang, L., Friedrich, K., Ye, L. and Toro, P. (2009), "Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites", J. Mater. Sci., 44(15), 4003-4012. https://doi.org/10.1007/s10853-009-3551-3   DOI
129 Chen, C.H. (2007), Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, World Scientific.
130 Schlichting, J., Maierhofer, C. and Kreutzbruck, M. (2012), "Crack sizing by laser excited thermography", NDT E Int., 45(1), 133-140. https://doi.org/10.1016/j.ndteint.2011.09.014.   DOI
131 Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nat., 442(7100), 282-286. https://doi.org/10.1038/nature04969   DOI
132 Shepard, S.M., Ahmed, T. and Lhota, J.R. (2004), "Experimental considerations in vibrothermography", Thermosense XXVI, 5405, 332-335.
133 Somersalo, E., Cheney, M. and Isaacson, D. (1992), "Existence and uniqueness for electrode models for electric current computed tomography", SIAM J. Appl. Math., 52(4), 1023-1040. https://doi.org/10.1137/0152060.   DOI
134 Wang, Y. and Weng, G.J. (2018), "Electrical conductivity of carbon nanotube-and graphene-based nanocomposites", Micromechanics and Nanomechanics of Composite Solids, Springer, Cham.
135 Vergani, L., Colombo, C. and Libonati, F. (2014), "A review of thermographic techniques for damage investigation in composites", Fract. Struct. Integr. Ann., 8, 1-12. https://doi.org/10.3221/IGF.ESIS.27.01.   DOI
136 Wang, Y., Wang, Y., Han, B., Wan, B., Cai, G. and Chang, R. (2018), "In situ strain and damage monitoring of GFRP laminates incorporating carbon nanofibers under tension", Polym., 10(7), 777. https://doi.org/10.3390/polym10070777.   DOI
137 Wang, Y., Wang, Y., Wan, B., Han, B., Cai, G. and Chang, R. (2018), "Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension", Compos. Part A: Appl. Sci. Manuf., 113, 40-52. https://doi.org/10.1016/j.compositesa.2018.07.017.   DOI
138 Weiss, N.O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y. and Duan, X. (2012), "Graphene: an emerging electronic material", Adv. Mater., 24(43), 5782-5825. https://doi.org/10.1002/adma.201201482.   DOI
139 Yang, B., Huang, Y. and Cheng, L. (2013), "Defect detection and evaluation of ultrasonic infrared thermography for aerospace CFRP composites", Infrar. Phys. Technol., 60, 166-173. https://doi.org/10.1016/j.infrared.2013.04.010.   DOI
140 Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Rollig, M. and Kunert, M. (2014), "Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations", Compos. Part B: Eng., 57, 35-46. https://doi.org/10.1016/j.compositesb.2013.09.036.   DOI
141 Speakman, J.R. and Ward, S. (1998), "Infrared thermography: principles and applications", Zoology-Jena-, 101, 224-232.
142 Roemer, J., Uhl, T. and Pieczonka, L. (2015), "Laser spot thermography for crack detection in aluminum structures", 7th International Symposium on NDT in Aerospace, 1-7.
143 Colombo, C., Libonati, F., Pezzani, F., Salerno, A., & Vergani, L. (2011), "Fatigue behaviour of a GFRP laminate by thermographic measurements", Procedia Eng., 10, 3518-3527. https://doi.org/10.1016/j.proeng.2011.04.579.   DOI
144 Ku-Herrera, J.J., Pacheco-Salazar, O.F., Rios-Soberanis, C.R., Dominguez-Rodriguez, G. and Aviles, F. (2016), "Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile loading", Sensor., 16(3), 400. https://doi.org/10.3390/s16030400.   DOI
145 Kaplan, H. (2007), Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Vol. 75, SPIE Press.
146 Zhang, Q.H. and Chen, D.J. (2004), "Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA", J. Mater. Sci., 39(5), 1751-1757. https://doi.org/10.1023/B:JMSC.0000016180.42896.0f.   DOI
147 Kaipio, J.P., Kolehmainen, V., Vauhkonen, M. and Somersalo, E. (1999), "Inverse problems with structural prior information", Invers. Prob., 15(3), 713.   DOI
148 Li, T., Almond, D.P. and Rees, D.A.S. (2011), "Crack imaging by scanning laser-line thermography and laser-spot thermography", Measure. Sci. Technol., 22(3), 035701.   DOI
149 Li, T., Almond, D.P. and Rees, D.A.S. (2011), "Crack imaging by scanning pulsed laser spot thermography", NDT E Int., 44(2), 216-225. https://doi.org/10.1016/j.ndteint.2010.08.006.   DOI
150 Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Ge, M. and Yan, W. (2003), "Image reconstruction of EIT using differential evolution algorithm", Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2, 1011-1014.
151 Spinks, G.M., Wallace, G.G., Liu, L. and Zhou, D. (2003), "Conducting polymers electromechanical actuators and strain sensors", Macromolecular Symposia, 192(1), 161-170. https://doi.org/10.1002/masy.200390025.   DOI
152 Loh, K.P., Bao, Q., Ang, P.K. and Yang, J. (2010), "The chemistry of graphene", J. Mater. Chem., 20(12), 2277-2289. https://doi.org/10.1039/B920539J.   DOI
153 Thomas, A., Kim, J., Tallman, T. and Bakis, C. (2019), "Damage detection in self-sensing composite tubes via electrical impedance tomography", Compos. Part B: Eng., 177, 107276. https://doi.org/10.1016/j.compositesb.2019.107276.   DOI
154 Thostenson, E.T. and Chou, T.W. (2008), "Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks", Nanotechnol., 19(21), 215713.   DOI
155 Martiny, M., Schiele, R., Gritsch, M., Schulz, A. and Wittig, S. (1996), "In situ calibration for quantitative infrared thermography", QIRT, 96, 3-8. https://doi.org/10.21611/qirt.1996.001.   DOI
156 Martin, C., Sandler, J., Windle, A., Schwarz, M.K., Bauhofer, W., Schulte, K. and Shaffer, M. (2005), "Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites", Polym., 46(3), 877-886. https://doi.org/10.1016/j.polymer.2004.11.081.   DOI
157 Zhang, W., Dehghani-Sanij, A.A. and Blackburn, R.S. (2007), "Carbon based conductive polymer composites", J. Mater. Sci., 42(10), 3408-3418. https://doi.org/10.1007/s10853-007-1688-5.   DOI
158 Harizi, W., Chaki, S., Bourse, G. and Ourak, M. (2014), "Mechanical damage assessment of Glass Fiber-Reinforced Polymer composites using passive infrared thermography", Compos. Part B: Eng., 59, 74-79. https://doi.org/10.1016/j.compositesb.2013.11.021.   DOI
159 Libonati, F. and Vergani, L. (2013), "Damage assessment of composite materials by means of thermographic analyses", Compos. Part B: Eng., 50, 82-90. https://doi.org/10.1016/j.compositesb.2013.01.012.   DOI
160 Liu, S., Chevali, V.S., Xu, Z., Hui, D. and Wang, H. (2018), "A review of extending performance of epoxy resins using carbon nanomaterials", Compos. Part B: Eng., 136, 197-214. https://doi.org/10.1016/j.compositesb.2017.08.020.   DOI
161 Lu, J.P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79(7), 1297. https://doi.org/10.1103/PhysRevLett.79.1297.   DOI
162 Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003.   DOI
163 Talreja, R. (2003), Fatigue of Composite Materials, Elsevier.
164 Steinberger, R., Valadas Leitao, T.I., Ladstatter, E., Pinter, G., Billinger, W. and Lang, R.W. (2006), "Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing", Int. J. Fatig., 28(10), 1340-1347. https://doi.org/10.1016/j.ijfatigue.2006.02.036.   DOI
165 Sylvester, J. and Uhlmann, G. (1986), "A uniqueness theorem for an inverse boundary value problem in electrical prospection", Commun. Pure Appl. Math., 39(1), 91-112. https://doi.org/10.1002/cpa.3160390106.   DOI
166 Tallman, T.N., Gungor, S., Wang, K.W. and Bakis, C.E. (2014), "Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography", Smart Mater. Struct., 23(4), 045034. https://doi.org/10.1088/0964-1726/23/4/045034.   DOI
167 Mickelson, E., Huffman, C., Rinzler, A., Smalley, R., Hauge, R. and Margrave, J. (1998), "Fluorination of single-wall carbon nanotubes", Chem. Phys. Lett., 296(1-2), 188-194. https://doi.org/10.1016/S0009-2614(98)01026-4.   DOI
168 McCrary-Dennis, M.C. and Okoli, O.I. (2012), "A review of multiscale composite manufacturing and challenges", J. Reinf. Plast. Compos., 31(24), 1687-1711. https://doi.org/10.1177/0731684412456612.   DOI
169 Meola, C. (2012), Infrared Thermography Recent Advances and Future Trends, Bentham Science Publishers.
170 Meola, C., Carlomagno, G.M., Squillace, A. and Vitiello, A. (2006), "Non-destructive evaluation of aerospace materials with lock-in thermography", Eng. Fail. Anal., 13(3), 380-388. https://doi.org/10.1016/j.engfailanal.2005.02.007.   DOI
171 Mitchell, C.A., Bahr, J.L., Arepalli, S., Tour, J.M. and Krishnamoorti, R. (2002), "Dispersion of functionalized carbon nanotubes in polystyrene", Macromol., 35(23), 8825-8830. https://doi.org/10.1021/ma020890y.   DOI
172 Montserrat, S. and Malek, J. (1993), "A kinetic analysis of the curing reaction of an epoxy resin", Thermochimica Acta, 228, 47-60. https://doi.org/10.1016/0040-6031(93)80273-D.   DOI
173 Ajayan, P.M., Schadler, L.S. and Braun, P.V. (2006), Nanocomposite Science and Technology, John Wiley & Sons.
174 Munoz, V., Vales, B., Perrin, M., Pastor, M.L., Welemane, H., Cantarel, A. and Karama, M. (2016), "Damage detection in CFRP by coupling acoustic emission and infrared thermography", Compos. Part B: Eng., 85, 68-75. https://doi.org/10.1016/j.compositesb.2015.09.011.   DOI
175 Olmi, R., Bini, M. and Priori, S. (2000), "A genetic algorithm approach to image reconstruction in electrical impedance tomography", IEEE Tran. Evol. Comput., 4(1), 83-88. https://doi.org/10.1109/4235.843497.   DOI
176 Oswald-Tranta, B. and Wally, G. (2006), "Thermo-inductive surface crack detection in metallic materials", Proc. 9th Eur. Conf. NDT, 1-8.
177 Abdo, M. (2014), Structural Health Monitoring, History, Applications and Future, A Review Book, Open Science.
178 Adler, A. and Lionheart, W.R. (2006), "Uses and abuses of EIDORS: An extensible software base for EIT", Physiolog. Measure., 27(5), S25.   DOI
179 Choudhary, N., Hwang, S. and Choi, W. (2014), "Carbon nanomaterials: A review", Handbook of Nanomaterials Properties, 709-769.
180 Zha, J.W., Zhang, B., Li, R.K.Y. and Dang, Z.M. (2016), "High-performance strain sensors based on functionalized graphene nanoplates for damage monitoring", Compos. Sci. Technol., 123, 32-38. https://doi.org/10.1016/j.compscitech.2015.11.028.   DOI
181 Christensen, R.M. (2012), Mechanics of Composite Materials. Courier Corporation.
182 Ma, P.C., Kim, J.K. and Tang, B.Z. (2007), "Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites", Compos. Sci. Technol., 67(14), 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006.   DOI