• Title/Summary/Keyword: Electrical faults

Search Result 1,083, Processing Time 0.026 seconds

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads (개인용 컴퓨터 부하의 직렬동조필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구)

  • Seo, Beom-Gwan;Kim, Kyung-Chul;Lee, Il-Moo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.36-41
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags at faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

Faults Current Discrimination of Power System Using Wavelet Transform (웨이블렛 변환을 이용한 전력시스템 고장전류의 판별)

  • Lee, Joon-Tark;Jeong, Jong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.75-81
    • /
    • 2007
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to Fourier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the Fast Fourier Transform(FFT).

An Evaluation Method for Short-Term Ratings of Double-Circuit Overhead Transmission Lines (2회선 가공송전선의 단시간정격에 관한 평가방법)

  • Kim, Sung-Duck;Sohn, Hong-Kwan;Jang, Tae-In
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.20-28
    • /
    • 2007
  • This paper describes an analytical method to determine the short-term ratings to reliably operate the overhead transmission lines with double-circuit lines when faulting one circuit of the two. As linearizing the thermal equilibrium equation that represents the temperature characteristic of conductors, we show that the linear equation can be easily represented the over-current and it's temperature property during overloading the one line. Generally, it is well hewn that the short-term line ratings should be determined by considering both conductor life and dip. However, most power companies have their own different guides for the short-term ratings. Using the suggested method in this paper, it can be re-accessed the short-term ratings given in Kepco's overhead transmission lines constructed during the past three different periods. As a result, it is verified that the short-term ratings could be increased mil efficiently. Furthermore, it would be directly applied the given method to determine the short-term dynamic line ratings when occurring faults in one of the double-circuit lines, without doing my other actions for the current lines.

A Study on the Test Strategy of Digital Circuit Board in the Production Line Based on Parallel Signature Analysis Technique (PSA 기법에 근거한 생산라인상의 디지털 회로 보오드 검사전략에 대한 연구)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.768-775
    • /
    • 2004
  • The SSA technique in the digital circuit test is required to be repeated the input pattern stream to n bits output nodes n times in case of using a multiplexor. Because the method adopting a parallel/serial bit convertor to remove this inefficiency has disadvantage of requiring the test time n times for a pattern, the test strategy is required, which can enhance the test productivity by reducing the test time based on simplified fault detection mechanism. Accordingly, this paper proposes a test strategy which enhances the test productivity and efficiency by appling PAS (Parallel Signature Analysis) technique to those after analyzing the structure and characteristics of the digital devices including TTL and CMOS family ICs as well as ROM and RAM. The PSA technique identifies the faults by comparing the reminder from good device with reminder from the tested device. At this time, the reminder is obtained by enforcing the data stream obtained from output pins of the tested device on the LFSR(Linear Feedback Shift Resister) representing the characteristic equation. Also, the method to obtain the optimal signature analyzer is explained by furnishing the short bit input streams to the long bit input streams to the LFSR having 8, 12, 16, 20bit input/output pins and by analyzing the occurring probability of error which is impossible to detect. Finally, the effectiveness of the proposed test strategy is verified by simulating the stuck at 1 errors or stuck at 0 errors for several devices on typical 8051 digital board.

A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control (모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Arc Fault Circuit Interrupter Design using Microprocessor (마이크로프로세서를 이용한 아크결함 차단기 설계)

  • Yoon, Kwang-Ho;Ban, Gi-Jong;Lee, Hyo-Jik;Park, Byung-Suk;Nam, Moon-Hyon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.12-18
    • /
    • 2007
  • As an arc fault interrupter, the AFCI mentioned in this paper has been designed to detect and interrupt arc faults due to wire deterioration, insulation, wire damage, loose connection, and excessive mechanical damage. Since AFCI is digital and uses mechanical and electric stress, the length of interruption against overload and over-current is much shorter than the current bi-metal method. Therefore, the risk of electrical fires has been reduced.

A Study on Stator Winding Turn-Fault Model for Fault Diagnosis in Inverter-Driven Permanent Magnet Moor Drives (고장진단을 위한 영구자식 동기전동기의 권선 단락에 의한 고장모델 연구 및 특성해석)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.18-28
    • /
    • 2009
  • To analyze influences under faults caused by a stator winding short and to evaluate an effectiveness of a diagnostic algorithm a faulty model for an inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control the motor, it can not be used in the analysis of a faulty motor since the 3-phase balanced condition is no longer hold under the fault caused by a stator winding short, and thus, it is very difficult to obtain motor input voltages from the pole voltage of an inverter. To overcome this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is proposed by considering the line voltage of 3-phase variables. The effectiveness of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335 and motor built to allow a partial short of inter-turn.